

Truck Hydraulics

Series GPA, GP1, F1, F2, T1, VP1,
Fixed and Variable Displacement Pumps,
Motors and Accessories

aerospace
climate control
electromechanical
filtration
fluid & gas handling
hydraulics
pneumatics
process control
sealing & shielding

ENGINEERING YOUR SUCCESS.

Conversion factors

1 kg.....	2,20 lb
1 N.....	0,225 lbf
1 Nm.....	0,738 lbf ft
1 bar	14,5 psi
1 l.....	0,264 US gallon
1 cm ³	0,061 cu in
1 mm.....	0,039 in
9/5 °C + 32	1°F
1 kW	1,34 hp

General Information

General information, design

General Information

Page 4 - 10

1**Pump and line selection**

Installation guide lines

Pump and line selection

Page 11 - 14

2**GPA and GP1**

Fixed Displacement - Gear Pumps

GPA and GP1

Page 15 - 20

3**F1 Pump**

Fixed Displacement - Axial Piston Pump. ISO and SAE version

F1

Page 21 - 31

4**F1 Motor**

Fixed Displacement - Axial Piston Motor.

F1

Page 32 - 33

5**F2 Twin-flow pump**

Fixed Displacement - Axial Piston Pump

F2

Page 34 - 36

6**T1 Pump**

Fixed Displacement - Axial Piston Pump.

T1

Page 37 - 40

7**VP1 Pump**

Variable Displacement - Axial Piston Pump

VP1

Page 41 - 50

8**BLA**

Boost units

BLA

Page 51

9**Fittings**

Suction fittings and fitting kits

Fittings

Page 52 - 53

10**Auxiliary Valves**

Bypass Valve and Unloading Valve

Auxiliary Valves

Page 54 - 60

11**Accessories**

Universal PTO air valve kits, PTO adapter kits for engines, Cardan shafts, pump couplings and mounting brackets, SB splitter boxes

Accessories

Page 61 - 69

12**Installation and start up**

GPA, GP1, F1, F2, T1 and VP1

Installation and start up

Page 70 - 74

13

GPA and GP1 Pumps

Light/medium duty pumps

Parker's truck gear pumps are ideal for operators of light trucks for their hydraulic power needs.

The GPA/GP1 series gear pumps are available to suit most applications. They are light and compact, and can be installed in either rear or side mount configuration thanks to their unique dual port layout.

The smaller GPA series is built with an extruded aluminum housing for minimum weight.

The larger GP1 pumps are built with compact cast iron housings for strength.

The gear pumps complement our heavy duty piston pumps and vane pumps.

The performance and characteristics are ideal for many light and/or intermittent applications, including the famous Parker reliability, and they are engineered with a long, trouble-free service life.

Features

- Compact and light weight - easy to install even on small vehicles
- Quiet operation - low noise emissions are important in sensitive areas
- Robust and reliable - means a long, trouble-free service life
- Built for high rpm's - less sensitive to over-speeding
- Bi-directional - easy to install
- Side or rear mount - use the ports on the side or at the rear, whichever is most suitable for the application.

See page 15

Series GPA

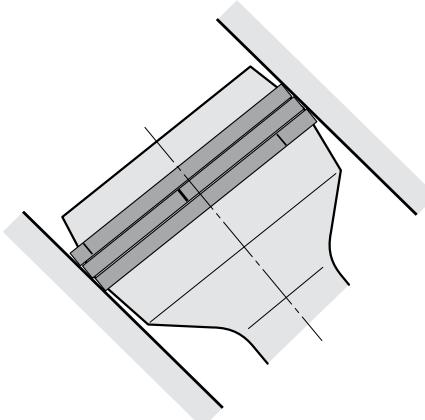
Series GP1

F1 Pump ISO

Series F1 is a further development of our well known 'truck pump', the F1. The F1 offers many additional values for operators of cargo cranes, hook loaders, skip loaders, forest cranes, concrete mixers and similar truck applications.

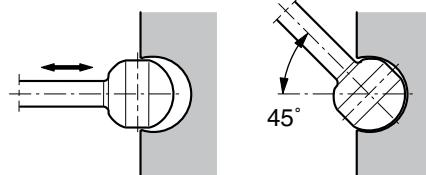
Series F1 is a very efficient and straight forward pump design with unsurpassed reliability.

Its small envelope size gives a simple and inexpensive installation.



Features of the F1 are:

- High selfpriming speeds
- Operating pressures up to 400 bar
- High overall efficiency
- Low noise level
- Small installation dimensions
- Low weight


... thanks to:

- 45° bent-axis angle
- Optimal inlet port geometry in the end cap
- Single housing design
- Spherical pistons - high speeds
- Laminated piston rings - low leakage
- Positive synchronisation with timing gear
- Installation above the reservoir level possible
- Tolerates low temperatures and high temperature shocks
- Shaft end and mounting flange meet the ISO standard for all sizes

F1 piston with laminated piston ring.

See page 21

F1 piston-to-shaft locking.

F1 Pump SAE

Features:

- Laminated piston rings - low leakage
- Positive synchronisation with timing gear
- Operating pressure up to 350 bar
- Installation above the reservoir level possible
- Tolerates low temperatures and high temperature shocks
- Shaft end and mounting flange meet the standard SAE-B
- 4 sizes -25 / -41 / -51 / -61 cm³/rev

See page 29

F1 Motor ISO

Features:

- Laminated piston rings - low leakage
- Positive synchronisation with timing gear
- Operating pressure up to 250 bar
- Tolerates low temperatures and high temperature shocks
- Shaft end and mounting flange meet the ISO standard for all sizes
- Tolerates high acceleration

See page 32

F2 Twin-flow pump

Series F2 is a further development of the twin-flow version of series F1, the very first bent-axis truck pump on the market to feature two entirely independent flows.

With a suitable build-up of the hydraulic system, the main advantage with a twin-flow pump is that three different flows can be provided at the same engine speed.

The twin-flow pump makes it possible to further optimise the hydraulic system and offers:

- Less energy consumption
- Reduced risk of system overheating
- Lower weight
- Easier installation
- Standardised system solutions

The twin-flow pump makes it possible to operate two work functions that are independent of each other which leads to higher speed and an increased operating precision.

Another requirement can be a large and a small flow, or two equal flows. All of these alternatives are possible with the twin-flow pump.

The pump can be utilised to provide one flow at high system pressure, and, as soon as the pressure has decreased sufficiently, add the flow from the other circuit.

This eliminates the risk of exceeding the PTO power rating and, at the same time, provide an optimal driving function.

Typical twin-flow applications

- Large truck loaders
- Forestry cranes
- Hook loaders/lift dumpers
- Tipper/crane combinations
- Refuse collecting vehicles

The pump shaft end/mounting flange meets the ISO standard and suits PTO direct mounting.

See page 34

T1 Pump

The T1 fixed displacement pump is a further development of series T1, which was specifically designed to meet the requirements of light duty truck applications with short, non-frequent operating cycles such as tippers, and small loaders.

The design is very similar to that of the F1 series pumps but is even more compact. It utilises our well proven 45° concepts with spherical pistons and laminated piston rings, offering high volumetric and mechanical efficiencies and, thanks also to the small number of parts, unprecedented reliability.

- Shaft speed to 2300 rpm
- Operating pressure up to 350 bar
- High overall efficiency
- Low weight
- Small installation dimensions
- Robust construction

The T1, with shaft and mounting flange configuration conforming to the European standard, can be installed on most European truck gearboxes. Suitable power-take-offs are also available from Parker Hannifin.

Typical T1 applications

- Front end tippers
- Under body tippers
- Hydraulic system infrequently used and with short cycle times.

See page 37

VP1 Pump

The VP1 is a variable displacement pump for truck applications. It can be close-coupled to a gearbox PTO (power take-off) or to a coupling independent PTO (e.g. an engine PTO) which meets ISO standard 7653-1985.

An application that makes full use of all the features of the VP1 is truck cranes with a load sensing system. The complex systems of refuse collection vehicles and sewage trucks as well as various combinations of tippers, cranes, snow ploughs, and salt/sand spreaders can also be greatly simplified and optimised with the VP1 pump.

The VP1 provides the hydraulic system with the correct amount of fluid at precisely the right moment, effectively reducing energy consumption and heat generation. This means a smoother and quieter hydraulic system with much reduced impact on the environment.

The VP1 is highly efficient and extremely light. It is reliable, economical and easy to install.

The four frame sizes, VP1-045, -075, -095 and -120 have small installation dimensions.

The VP1 is suitable for all load sensing systems, regardless of make.

Design

Large angle - compact design

The pump design permits a large angle, 20°, between piston and slipper shoe/swashplate, providing compactness and small outer dimensions.

Tandem coupling

The through-shaft on VP1-45/-75 permits tandem coupling of an additional pump, such as a series F1 fixed displacement pump.

Long life

The VP1 is designed for trucks with hydraulic load sensing systems. It is sturdy, yet simple, with few moving parts. The result is a reliable pump with long service life.

Features

- Variable displacement
- Low noise level
- High power-to-weight ratio
- Compact and light
- Highly efficient
- Sturdy design
- Withstands low temperatures
- Can be close coupled and tandem mounted.
(tandem coupling only for VP1-45/-75)

Retainer plate

The retainer plate (refer to the cut-away illustration in chapter 8) is of a heavy duty design which makes the pump withstand high shaft speeds and fast speed changes.(e. g. engine PTO).

See page 41

Accessories

Adaptor kits and accessories for F1, F2, T1 and VP1 pumps

BLA

Boost unit.

See chapter 9.

Fittings

Suction fittings and fitting kits

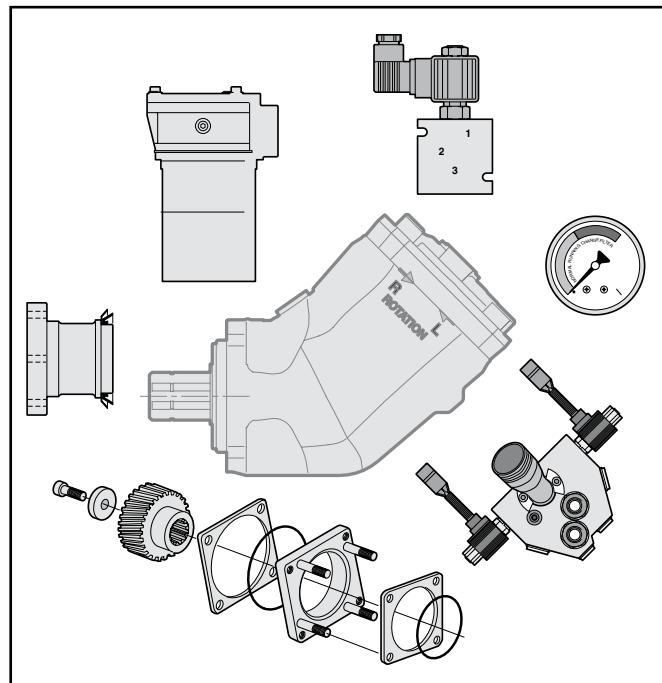
See chapter 10.

Bypass valve

BPV-F1/-T1, BPV-F1-25 and 81, BPV-F2,

See chapter 11.

Unloading valve


BPV-VP1, BPV-L.

See chapter 11.

Accessories

Universal PTO air valve kits, PTO adapter kits for engines, cardan shafts, pump couplings and mounting brackets, and splitter boxes
(SB 1-1,18, 1-1,54)

See chapter 12.

Pump and Line selection

Installation guide lines for
GPA, GP1, F1, F2, T1
and VP1 pumps

1

2

Contents	Page
Pump selection	
F1 and T1	12
Line selection	
all pumps	13
Nomogram.....	14

Pump selection

F1 and T1

The following table shows pump flow at selected PTO gear ratios and engine rpm's.

PTO gear ratio	Engine speed [rpm]	Pump flow [l/min]					
		F1-25	F1-41	F1-51	F1-61	T1-81	T1 121
1:0.8	800	16	26	33	38	52	66
	900	18	29	37	43	59	74
	1000	20	33	41	48	65	82
	1100	23	36	45	52	72	91
	1200	25	39	49	57	78	99
1:1.0	800	20	33	41	48	65	82
	900	23	37	46	54	73	93
	1000	26	41	51	60	82	103
	1100	28	45	56	65	90	113
	1200	31	49	61	71	98	123
1.1.25	800	26	41	51	60	82	103
	900	29	46	57	67	92	116
	1000	32	51	64	74	102	129
	1100	35	56	70	82	111	141
	1200	38	61	77	89	122	154
1:1.5	800	31	49	61	71	98	123
	900	35	55	69	80	110	139
	1000	38	61	77	90	122	154
	1100	42	67	84	98	135	170
	1200	46	74	92	107	147	185

NOTE:

- Make sure max torque and bending moment (due to the weight of the pump) of the utilised PTO are not exceeded. (The approx. center of gravity of the various pump sizes are shown in the installation drawings).
- Make sure max allowed output torque from the PTO is not exceeded.
- Contact Parker Hannifin if the inlet (suction) pressure is believed to be less than 1.0 bar (absolute); insufficient inlet pressure can cause noise and pump damage because of cavitation.

Flow and torque formulas (no regard to efficiency)

$$\text{Flow: } Q = \frac{D \times n}{1000} \text{ [l/min]}$$

where: D is pump displacement [cm³/rev]
n is shaft speed [rpm]

$$\text{Torque: } M = \frac{D \times p}{63} \text{ [Nm]}$$

where: D is pump displacement [cm³/rev]
p is utilised pressure [bar]

A suitable pump size for a truck application can be selected as follows:

Operating conditions

As an example, a cargo crane specifies:

- Flow: 60-80 l/min
- Pressure: 230 bar
- Diesel engine speed \approx 800 rpm

Determine pump speed

As example a PTO with a Gear Ratio of 1:1.54.

The pump speed will be:

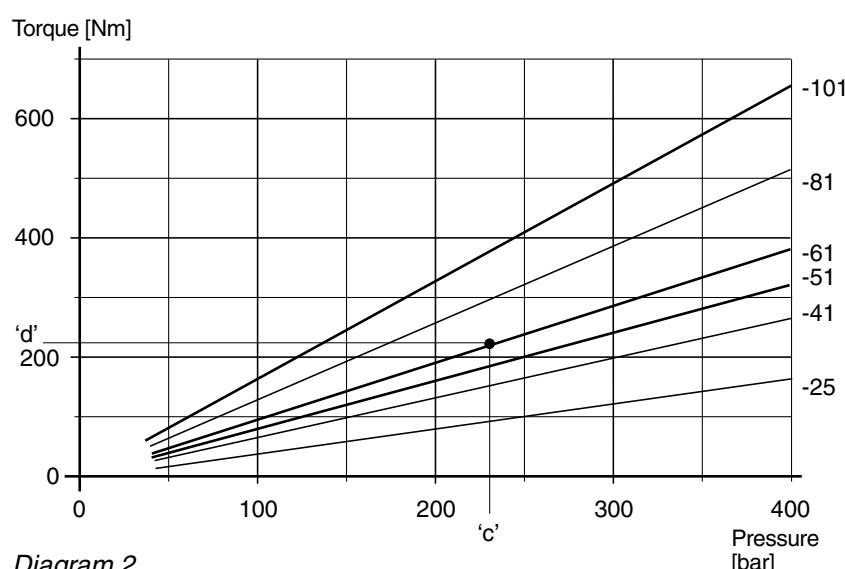
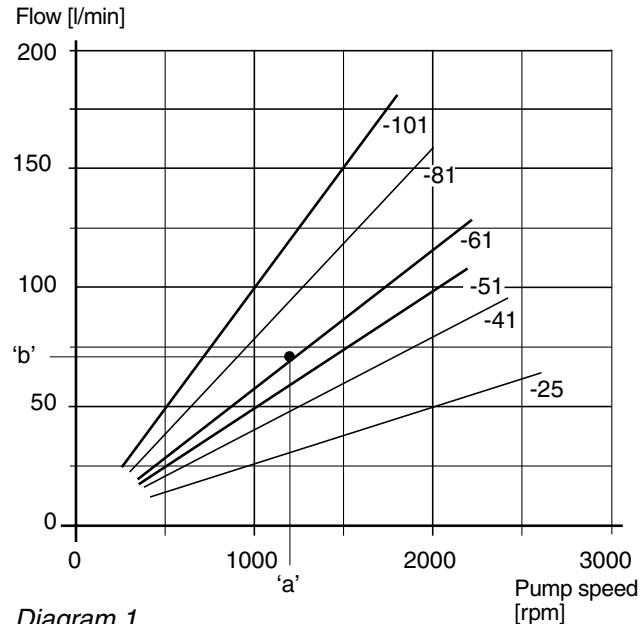
- $800 \times 1.54 \approx 1200$ rpm

Select a suitable pump size

Use diagram 1 and select a pump that will provide 60 - 80 l/min at 1200 rpm.

Follow line 'a' (1200 rpm) until it crosses line 'b' (70 l/min).

- F1-61 is a suitable choice



Required input torque

Make sure the PTO and the gear-box tolerates the pump torque. Use diagram 2 to obtain the required pump torque.

Follow a line from 'c' (230 bar) until it crosses the F1-61 line (the selected pump).

- Read 220 Nm (at 'd')

NOTE: A rule-of-thumb is to select the highest PTO ratio and the smallest pump size that meets the crane specification without exceeding the pump speed, pressure, and power limitations.

Line selection all pumps

Line type	Flow velocity [m/s]
Inlet (suction)	max 1.0
Outlet (pressure)	max 5.0

Flow rate [l/min]	Flow velocity [m/s] at selected line sizes [mm/inches]						
	19 3/4"	25 1"	32 1 1/4"	38 1 1/2"	51 2"	64 2 1/2"	75 3"
25	1,5	0,8	0,5	0,4	0,2	0,1	0,1
50	2,9	1,7	1,0	0,7	0,4	0,3	0,2
75	4,4	2,5	1,6	1,1	0,6	0,4	0,3
100	5,9	3,4	2,1	1,5	0,8	0,5	0,4
150	8,8	5,1	3,1	2,2	1,3	0,8	0,5
200	-	-	4,1	2,9	1,6	1,1	0,7
250	-	-	5,3	3,7	2,1	1,3	0,9

Table 1.

Outlet (pressure) line

In order to obtain sufficient inlet (suction) pressure to the pump, low noise level and low heat generation, flow speeds shown in table 2, right, should not be exceeded.

From table 1 (page 13), select the smallest line dimension that meets the flow speed recommendation; example:

- At 100 l/min, a 50 mm suction line and a 25 mm pressure line is needed.

NOTE: Long inlet (suction) lines, low inlet pressure (caused by e.g. a reservoir positioned below the pump) and/or low temperatures may require larger line dimensions.

Alternatively, the pump speed will have to be lowered to avoid pump cavitation (which may cause noise, deteriorating performance and pump damage).

Line type	Flow velocity [m/s]
Inlet (suction)	max 1.0
Outlet (pressure)	max 5.0

Table 2.

Nomogram

Flow - Line dimension - Flow velocity

Example 1
 Pressure line
 $Q = 65 \text{ l/min}$
 $d = 3/4"$
 $v = 3.8 \text{ m/s}$

Example 2
 Suction line
 $Q = 50 \text{ l/min}$
 $v = 0.8 \text{ m/s}$
 $d = 1 \frac{1}{2}"$

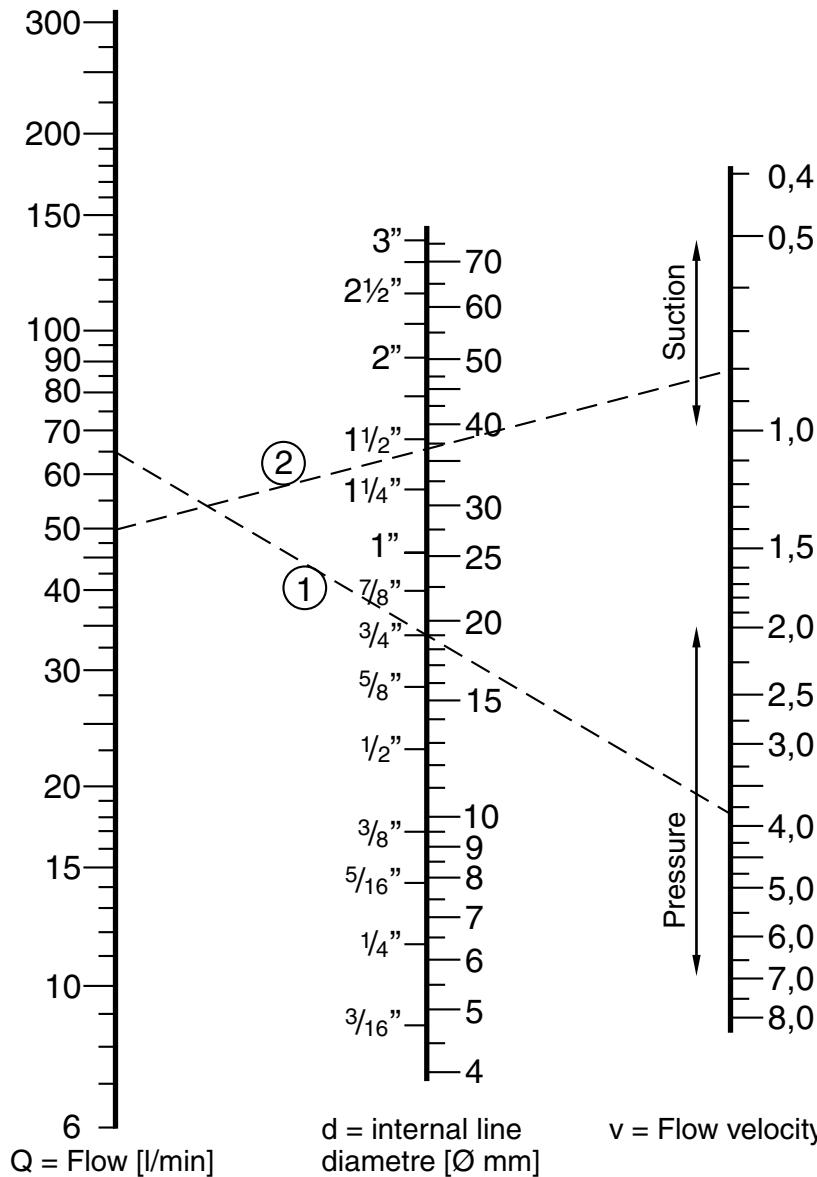


Table 3.

GPA and GP1 Pumps

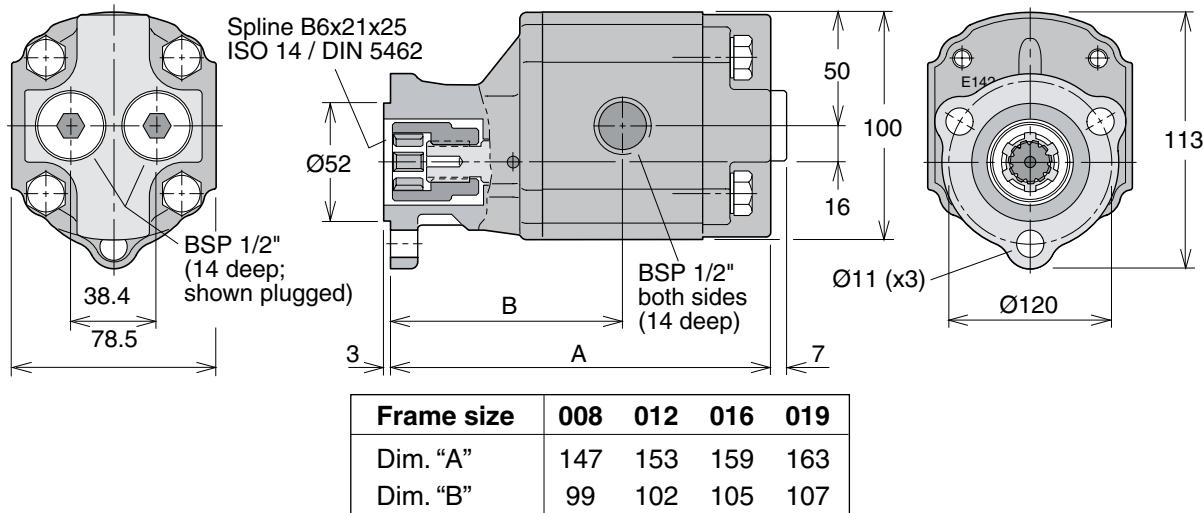
2

3

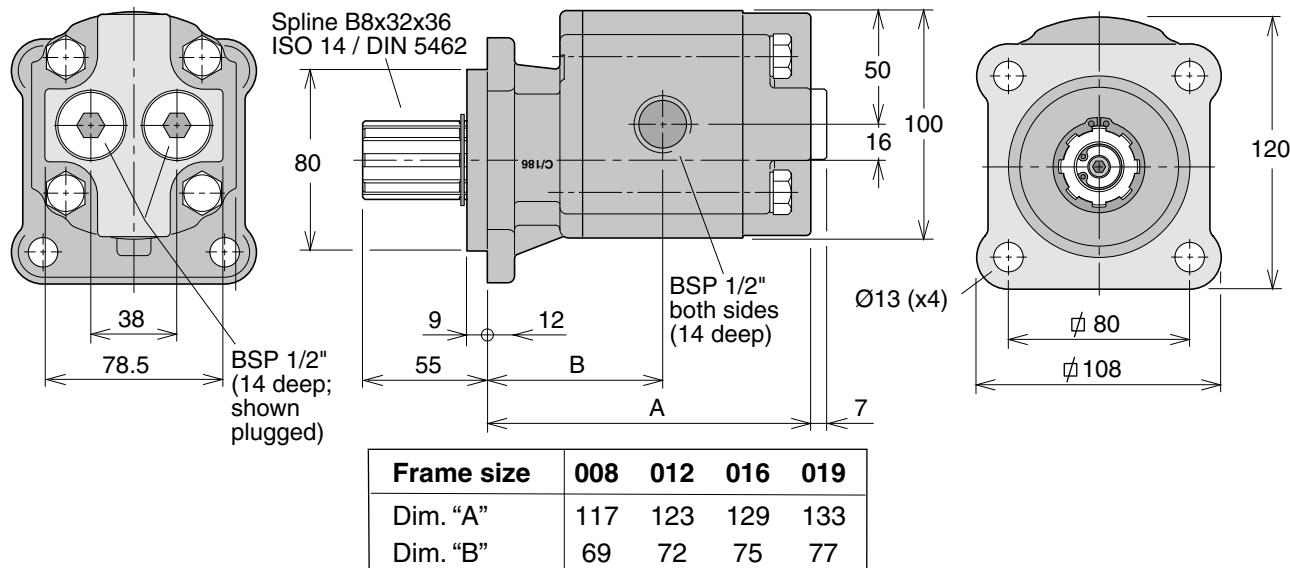
Contents**Page Chapter**

Pump and Line selection	12	2
Specifications	16	
Installation Dimensions.....	17-19	
Ordering Information.....	20	
Suction fittings	52	10
Installation and start up	71	13

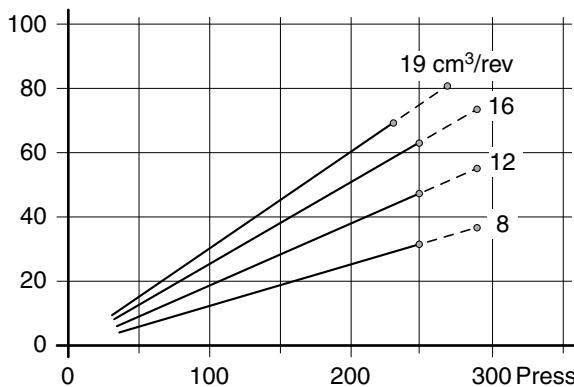
GPA and GP1 Specifications

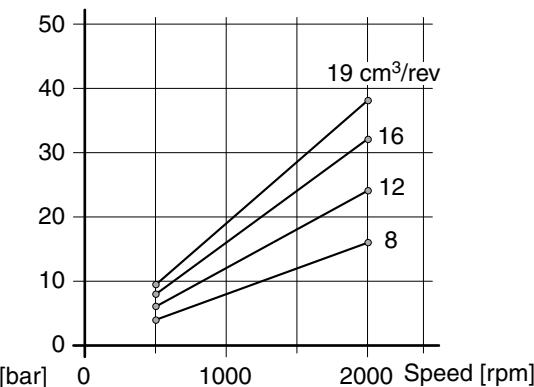

Series GPA (aluminum body; 3- and 4-bolt)

Frame size	008	012	016	019
Displacement [cm³/rev]	8	12	16	19
Max continuous pressure [bar]	250	250	250	230
Max intermittent pressure [bar]	270	270	270	250
Max peak pressure [bar]	290	290	290	270
Speed [rpm] (at max continuous pressure)	500	500	500	500
min	500	500	500	500
max	2000	2000	2000	2000
Weight [kg]	4.6	4.8	5.1	5.3


Series GP1 (cast iron body; 3- and 4-bolt)

Frame size	016	019	023	029	036	041	046	050	060	070	080	100
Displacement [cm³/rev]	16	19	23	29	36	41	46	50	60	70	80	100
Max continuous pressure [bar]	270	260	250	240	230	210	200	300	280	240	200	170
Max intermittent pressure [bar]	300	300	300	290	270	260	250	310	290	250	210	180
Max peak pressure [bar]	300	300	300	290	270	260	250	320	300	260	220	190
Speed [rpm] (at max continuous pressure)	500	500	500	500	500	500	500	500	500	500	500	500
min	500	500	500	500	500	500	500	500	500	500	500	500
max	2000	2000	2000	2000	2000	2000	2000	1800	1800	1700	1600	1400
Weight [kg]	6.0	6.3	6.7	7.1	7.5	7.8	8.1	12.5	13.0	13.5	14.0	15.0


GPA-008/-012/-016/-019 3-bolt


GPA-008/-012/-016/-019 4-bolt

Torque [Nm]

Flow [l/min]

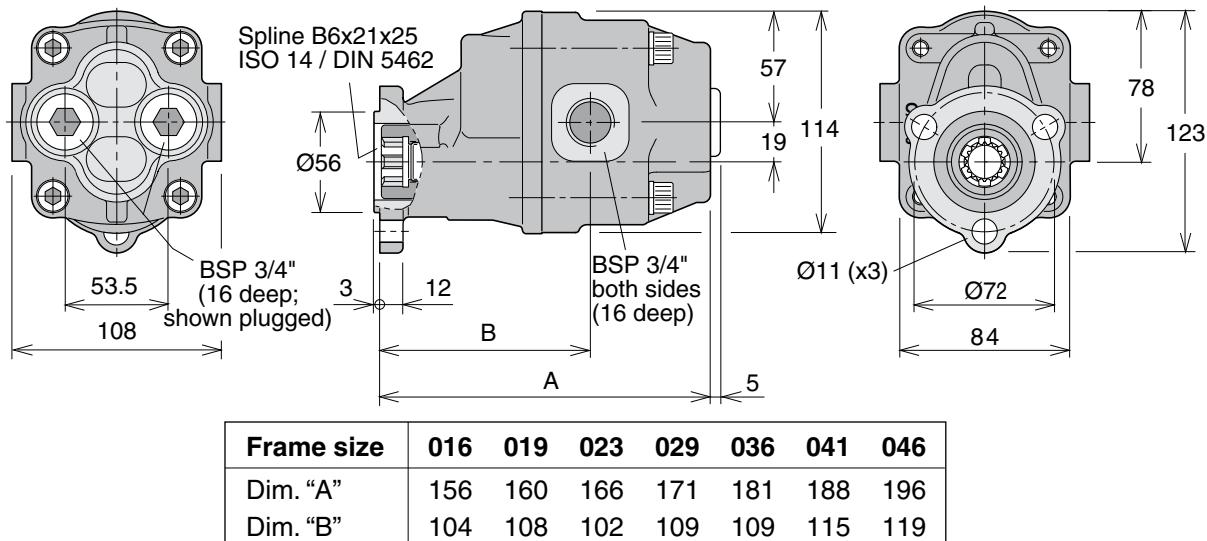
Diagrams reflect theoretical values

Direction of rotation: Bi-directional

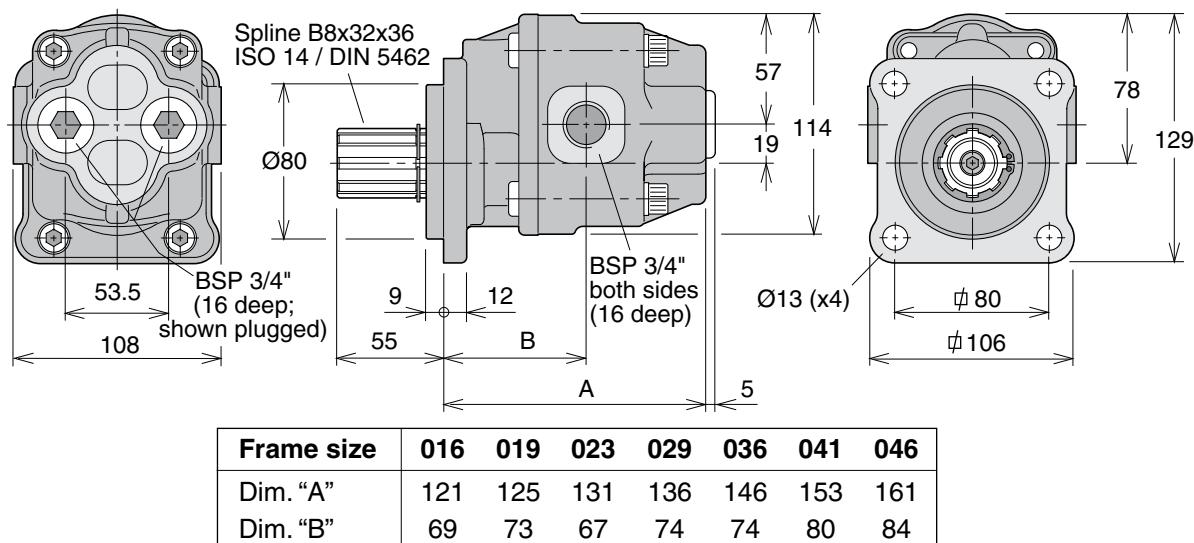
Input pressure: 0.7 to 3.0 bar (absolute)

Fluid temperature:

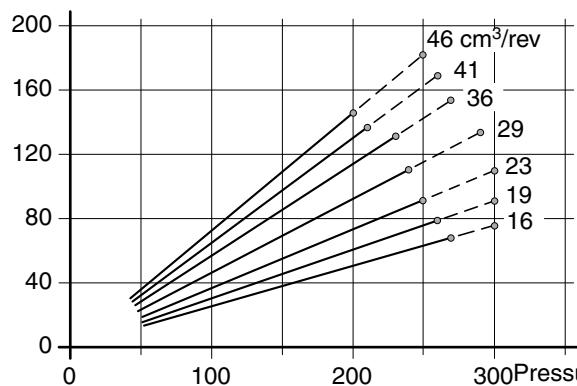
Recommended viscosity:

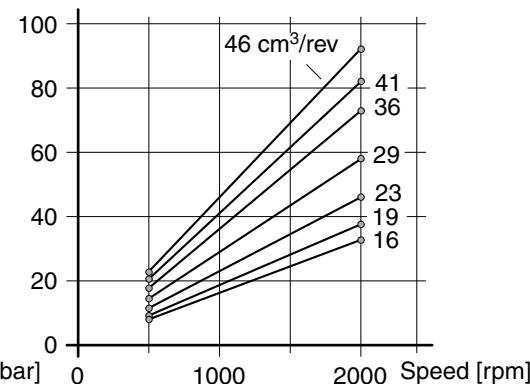

Max viscosity:

-25 °C to +80 °C


12 to 100 mm²/s (cSt)

750 mm²/s (cSt)


GP1-016/-019/-023/-029/-036/-041/-046 3-bolt

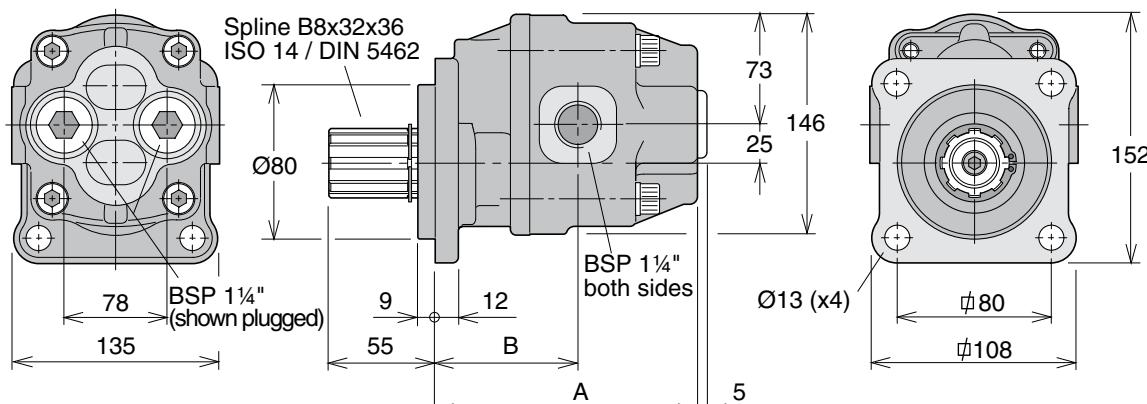

GP1-016/-019/-023/-029/-036/-041/-046 4-bolt

Torque [Nm]

Flow [l/min]

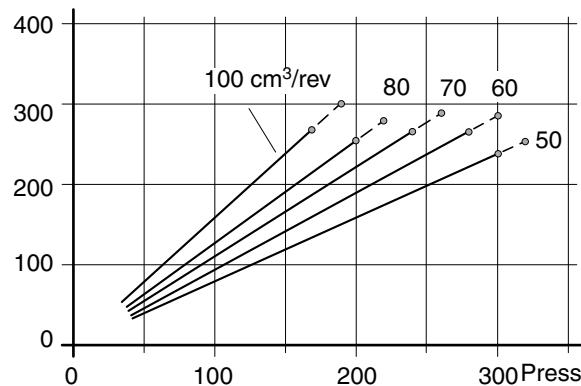
Diagrams reflect theoretical values

Direction of rotation: Bi-directional

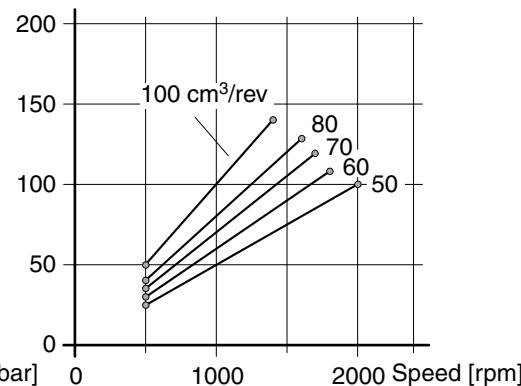

Input pressure: 0.7 to 3.0 bar (absolute)

Fluid temperature: -25 °C to +80 °C

Recommended viscosity: 12 to 100 mm²/s (cSt)


Max viscosity: 750 mm²/s (cSt)

GP1-050/-060/-070/-080/-100 4-bolt



Frame size	050	060	070	080	100
Dim. "A"	167	174	180	187	200
Dim. "B"	97	104	101	107	111

Torque [Nm]

Flow [l/min]

Diagrams reflect theoretical values

Direction of rotation: Bi-directional

Input pressure: 0.7 to 3.0 bar (absolute)

Fluid temperature: -25 °C to +80 °C

Recommended viscosity: 12 to 100 mm²/s (cSt)

Max viscosity: 750 mm²/s (cSt)

Ordering code

Example:

GPA- 008 - 3

A Aluminium body
1 Cast iron body

Frame size
008, 012, 016, 019, 023, 029, 036, 041,
046, 050, 060, 070, 080 or 100

3 3 bolt flange
4 4 bolt flange

Standard versions

Aluminium 3 bolt

Designation	Ordering no.
GPA-008-3	334 9113 921
GPA-012-3	334 9113 922
GPA-016-3	334 9113 923
GPA-019-3	334 9113 924

Aluminium 4 bolt

Designation	Ordering no.
GPA-008-4	334 9113 911
GPA-012-4	334 9113 912
GPA-016-4	334 9113 913
GPA-019-4	334 9113 914

Cast iron 3 bolt

Designation	Ordering no.
GP1-016-3	702 9113 921
GP1-019-3	702 9113 922
GP1-023-3	702 9113 923
GP1-029-3	702 9113 924
GP1-036-3	702 9113 925
GP1-041-3	702 9113 926
GP1-046-3	702 9113 927

Cast iron 4 bolt

Designation	Ordering no.
GP1-016-4	702 9113 911
GP1-019-4	702 9113 912
GP1-023-4	702 9113 913
GP1-029-4	702 9113 914
GP1-036-4	702 9113 915
GP1-041-4	702 9113 916
GP1-046-4	702 9113 917
GP1-050-4	704 9113 911
GP1-060-4	704 9113 912
GP1-070-4	704 9113 913
GP1-080-4	704 9113 914
GP1-100-4	704 9113 915

NOTE: The pump **does not** include a suction fitting; it must be ordered separately. See chapter 10.

F1 Pump

F1-ISO

3

4

Contents

Page **Chapter**

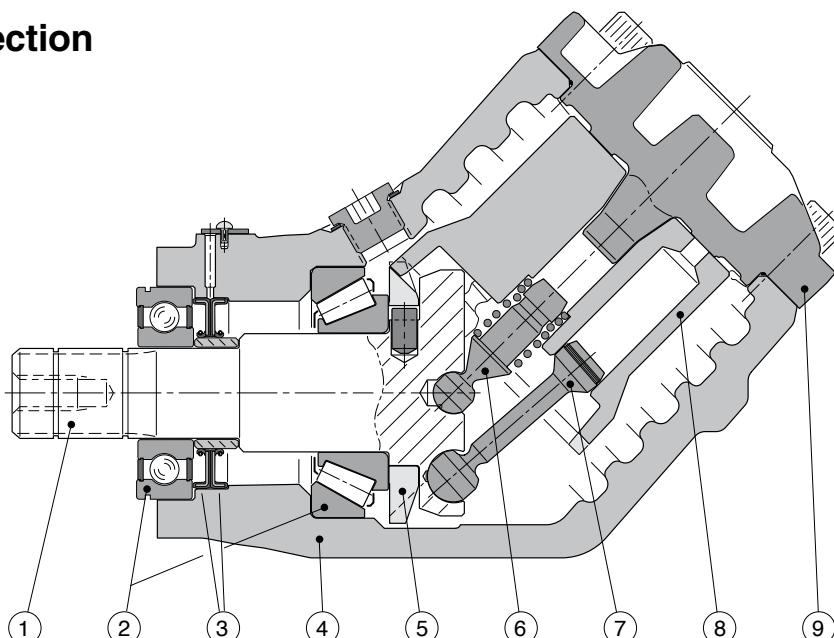
Pump and Line selection	12	2
F1-25 to -101, ISO	22	
Specifications and pump cross section	22	
Installation Dimensions, F1-25, -41, -51 and -61	23	
Ordering code and standard versions	23	
Installation Dimensions, F1-81 and -101	24	
Port size	24	
F1-12 ISO with BSP port treads	25	
Specifications and pump cross section	25	
Installation Dimensions, F1-12 with BSP port treads	26	
Ordering code and standard versions	26	
Installation Dimensions, F1-25, to -101, all ports are BSP	27-28	
Ordering code and standard versions	27-28	
Suction fittings	52	10
Installation and start up	70	13

F1-25 to -101, ISO Specifications

F1 frame size	25	41	51	61	81	101
Displacement [cm³/rev]	25.6	40.9	51.1	59.5	81.6	102.9
Max flow¹⁾ [l/min]						
at 350 bar	67	98	112	131	163 ³⁾	185 ³⁾
at 400 bar	56	86	97	113	143	160
Max operating pressure [bar]						
continuous	350				350	
intermittent	400					400
Shaft speed [rpm]						
- short circuited pump (low press.)	2700	2700	2700	2700	2300	2300
- max speed at 350 bar ²⁾	2600	2400	2200	2200	2000 ³⁾	1800 ³⁾
at 400 bar ²⁾	2200	2100	1900	1900	1750	1550 ³⁾
Torque¹⁾ [Nm]						
at 350 bar	142	227	284	331	453	572
at 400 bar	163	260	324	378	518	653
Input power [kW]						
- continuous	31	46	52	61	76	86
- intermittent ⁴⁾	39	57	66	76	95	108
Weight [kg]	8.5	8.5	8.5	8.5	12.5	12.5

1) Theoretical values

2) Valid at an inlet pressure of 1.0 bar (abs.) when operating on mineral oil at a viscosity of 30 mm²/s (cSt).


3) Valid with 2¹/₂" inlet (suction) line.

With 2" suction line: F1-81 – max 1400 rpm (Q≈120 l/min);
 F1-101 – max 1000 rpm (Q≈120 l/min).

4) Max 6 seconds in any one minute.

NOTE: For noise level information, contact Parker Hannifin

Pump cross section

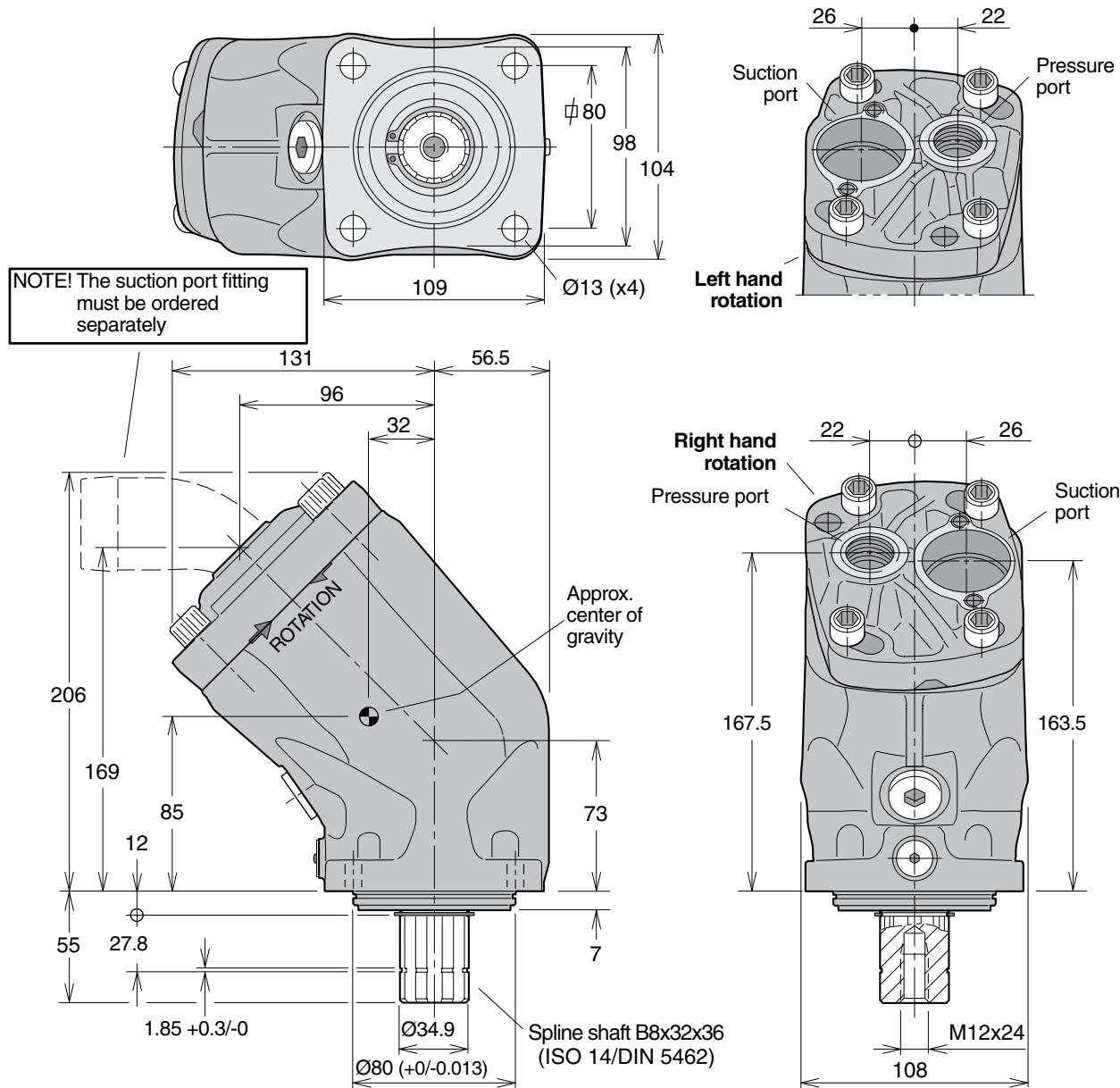
1. Input shaft

2. Bearings

3. Shaft seals

4. Housing

5. Timing gear


6. Barrel support

7. Piston with piston ring

8. Cylinder barrel

9. End cap

F1-25, -41, -51 and -61

4

Ordering code

Example:

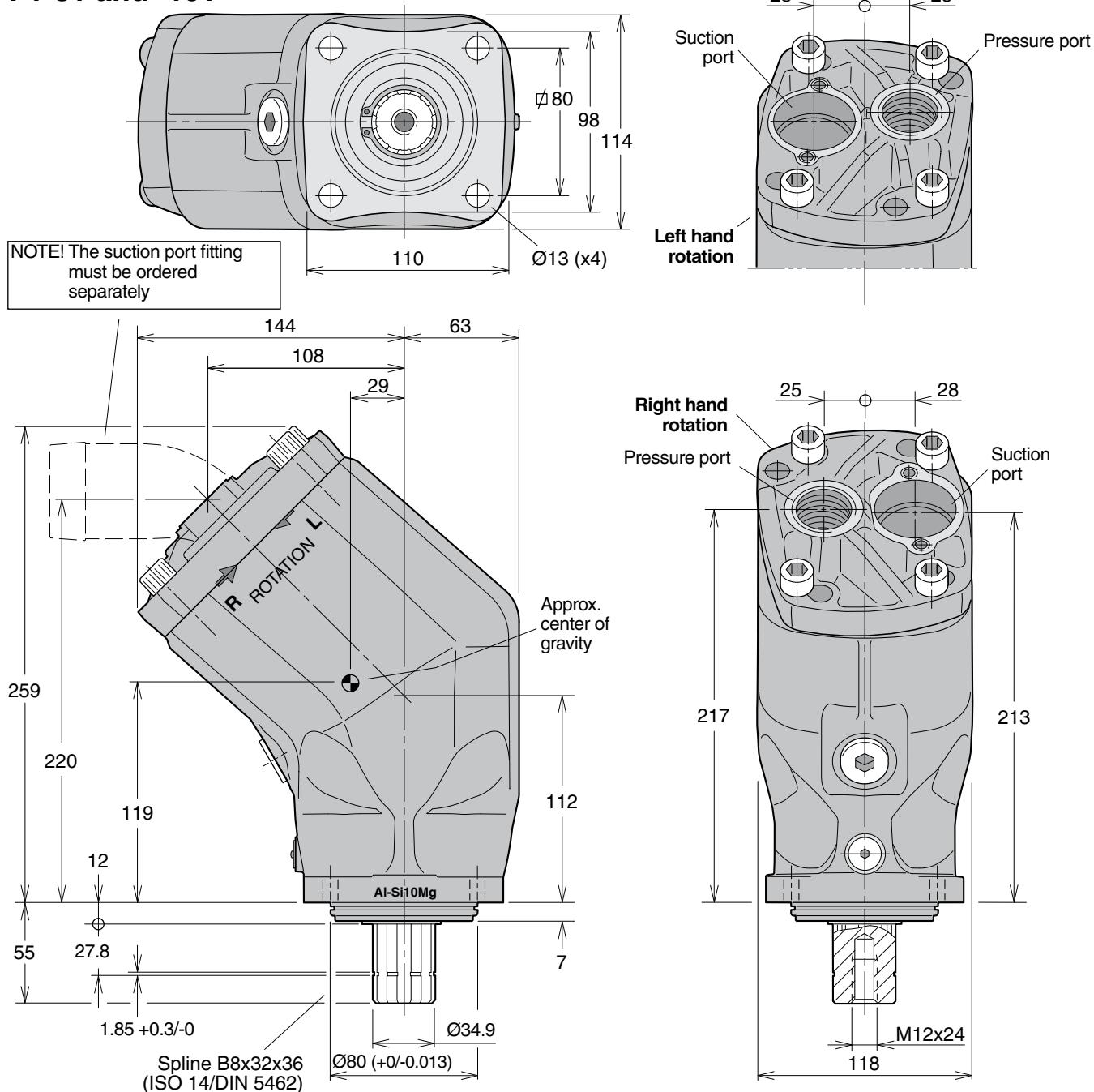
F1 frame size

25, 41, 51, 61, 81 or 101

F1- 81 - R

Shaft rotation

R Right hand


L Left hand

NOTE: The pump **does not** include a suction fitting; it must be ordered separately. See chapter 10.

Standard versions

Designation	Ordering no.
F1-25-R	378 1024
-L	378 1025
F1-41-R	378 1040
-L	378 1041
F1-51-R	378 1050
-L	378 1051
F1-61-R	378 1060
-L	378 1061

F1-81 and -101

Port size

F1 frame size	Pressure port ¹⁾
-25	3/4"
-41	3/4"
-51	3/4"
-61	3/4"
-81	1"
-101	1"

1) BSP thread (fitting not included)

Standard versions

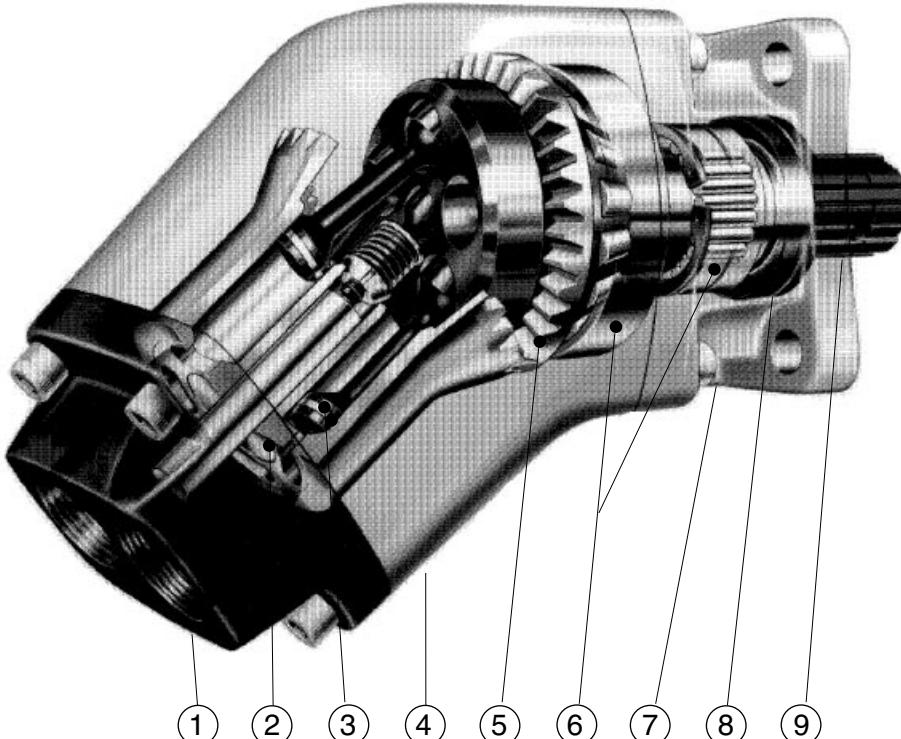
Designation	Ordering no.
F1-81-R	378 1080
-L	378 1081
F1-101-R	378 1100
-L	378 1101

NOTE: The pump **does not** include a suction fitting; it must be ordered separately. See chapter 10.

F1-12 ISO with BSP port treads

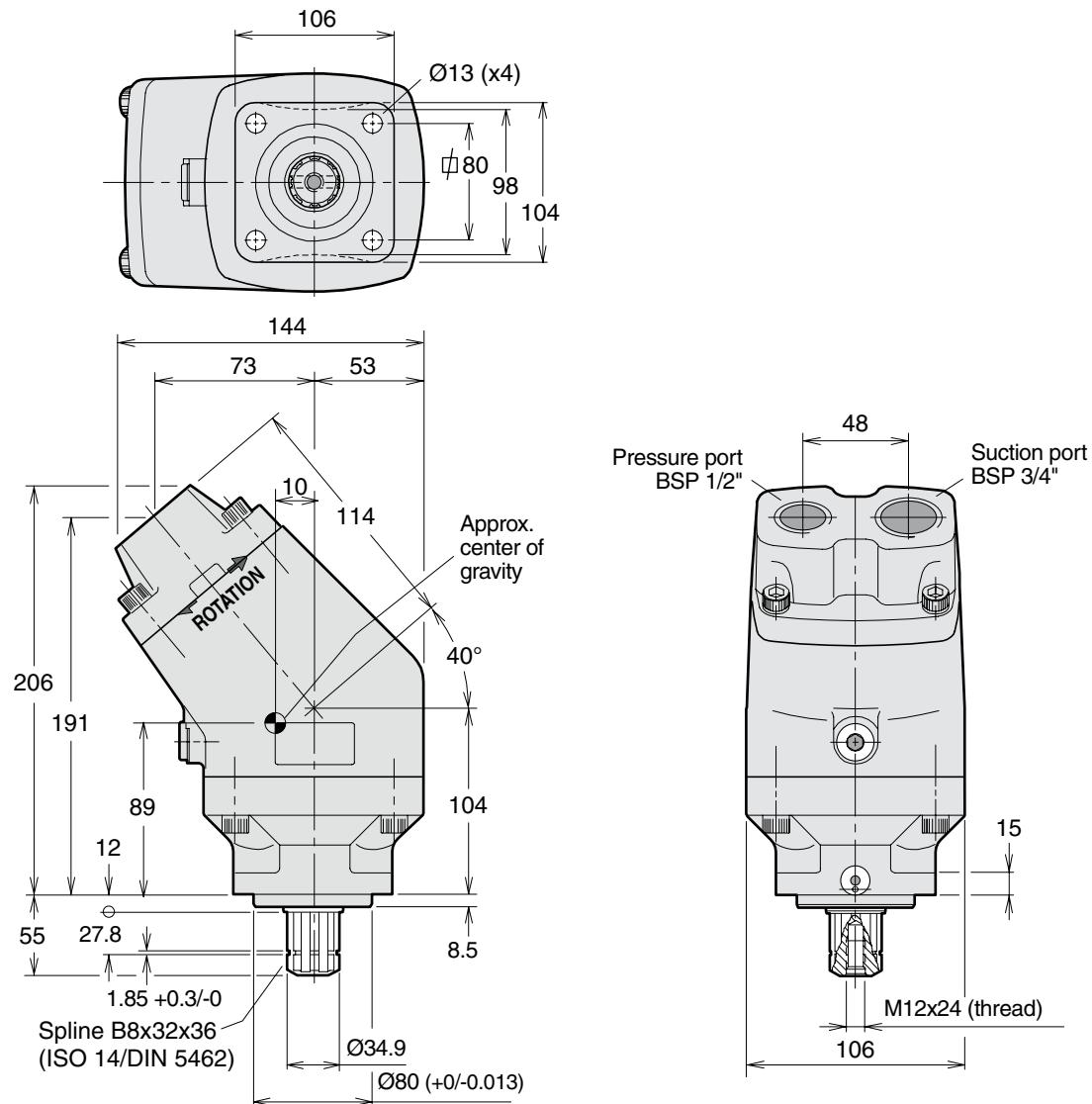
Specifications

F1 frame size	12
Displacement [cm ³ /rev]	12
Max flow ¹⁾ [l/min]	28
Max operating pressure [bar]	350
Shaft speed [rpm]	
- short circuited pump (low press.)	3100
- max selfpriming speed	2300
Torque ¹⁾ [Nm]	67
Input power [kW]	
- continuous	16.1
- intermittent ²⁾	21.7
Weight [kg]	6.7


1) Theoretical values

2) Max 6 seconds in any one minute.

NOTE: For noise level information, contact Parker Hannifin


4

Pump cross section

1 End cap	4 Barrel housing	7 Bearing housing with flange
2 Cylinder barrel	5 Timing gear	8 Shaft seals
3 Piston with piston ring	6 Roller bearings	9 Input shaft

F1-12 with BSP port treads

Ordering code

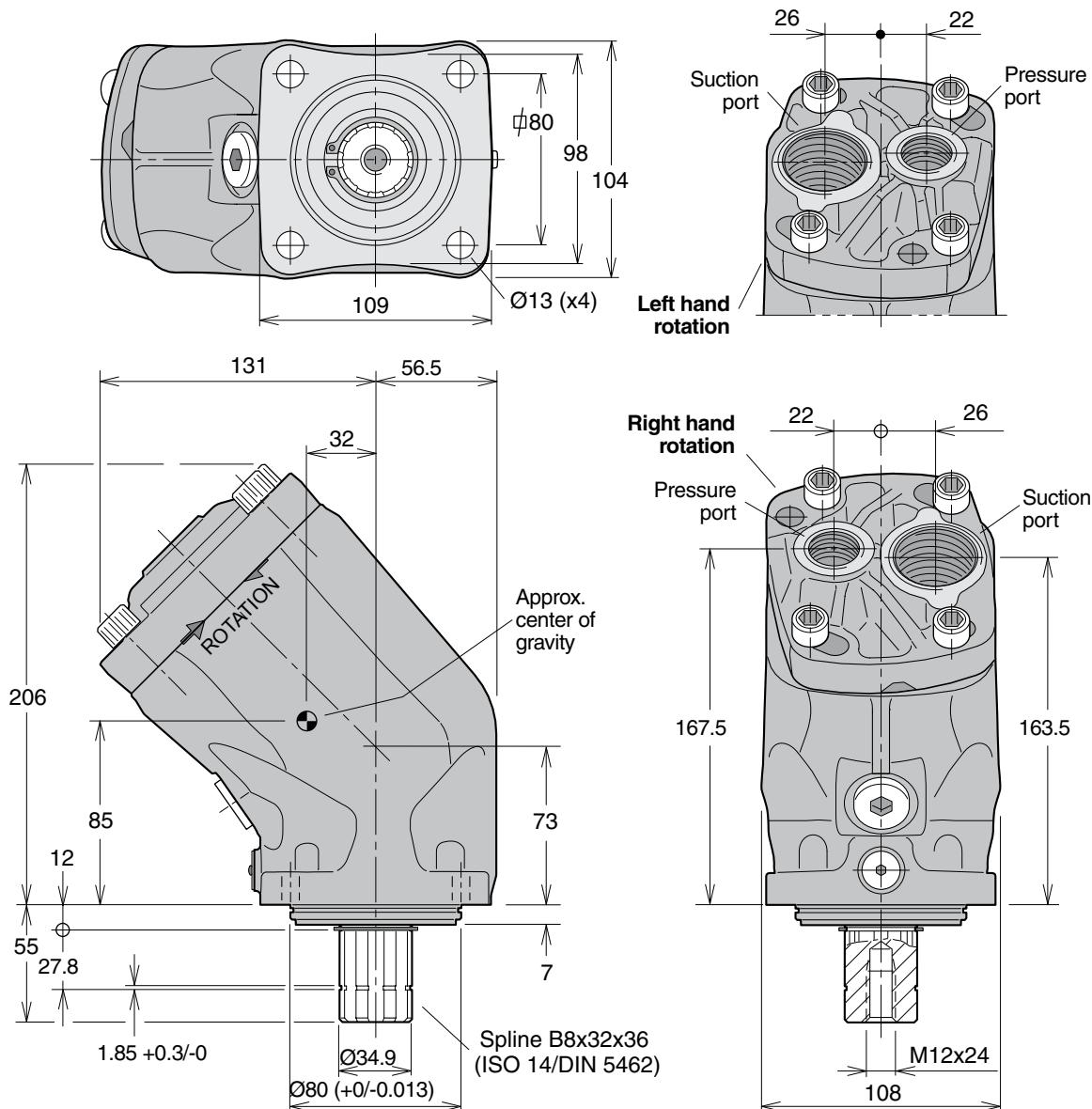
Example:

F1- 12 - R

F1 frame size **12**

Shaft rotation

R Right hand


L Left hand

NOTE: The pump **does not** include a suction fitting; it must be ordered separately. See chapter 10.

Standard versions

Designation	Ordering no.
F1-12-R	378 2212
-L	378 2211

F1-25, -41, -51 and -61 with BSP port treads

4

Port size (all ports are BSP)

F1 frame size	Pressure port	Suction port
-25	3/4"	1"
-41	3/4"	1"
-51	3/4"	1"
-61	3/4"	1"

Ordering code

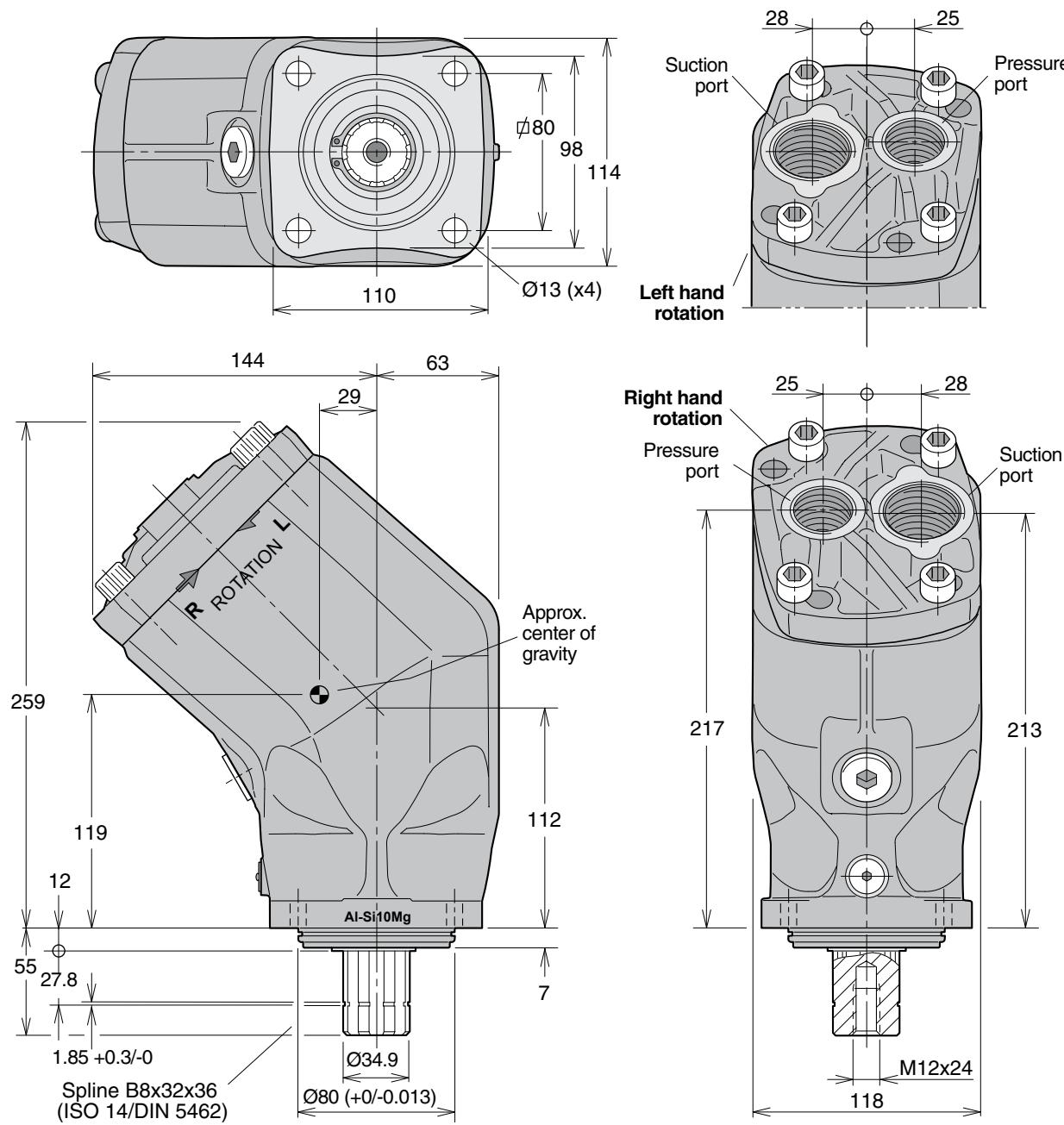
Example: **F1-61-RB**

F1 frame size

25, 41, 51, 61, 81 or 101

Shaft rotation/port threads

RB Right hand/BSP


LB Left hand/BSP

Standard versions

Designation	Ordering no.
F1-25-RB	378 4024
-LB	378 4025
F1-41-RB	378 4040
-LB	378 4041
F1-51-RB	378 4050
-LB	378 4051
F1-61-RB	378 4060
-LB	378 4061

NOTE: The pump **does not** include a suction fitting; it must be ordered separately. See chapter 10.

F1-81 and -101 with BSP port treads

Port size (all ports are BSP)

F1 frame size	Pressure port	Suction port
-81	1"	$1\frac{1}{4}$ "
-101	1"	$1\frac{1}{4}$ "

Ordering code

Example: **F1- 81 - RB**

F1 frame size _____

25, 41, 51, 61, 81 or 101

Shaft rotation/port threads _____

RB Right hand/BSP

LB Left hand/BSP

Standard versions

Designation	Ordering no.
F1-81-RB	378 4080
-LB	378 4081
F1-101-RB	378 4100
-LB	378 4101

NOTE: The pump **does not** include a suction fitting; it must be ordered separately. See chapter 10.

F1 Pump

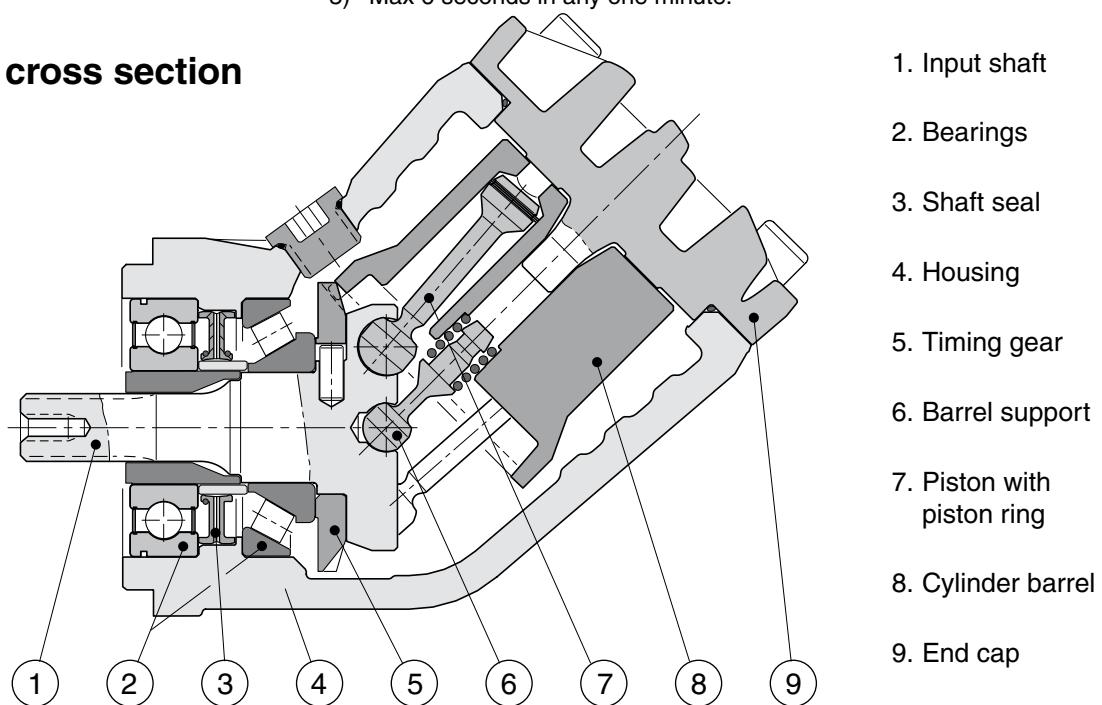
F1-SAE

4

Contents	Page	Chapter
Pump and Line selection	12	2
Specifications	30	
Pump cross section	30	
Installation dimensions, F1-25, -41, -51 and -61 (SAE).....	31	
Ordering code (SAE)	31	
Port size.....	31	
Suction fittings	52	10
Installation and start up	70	13

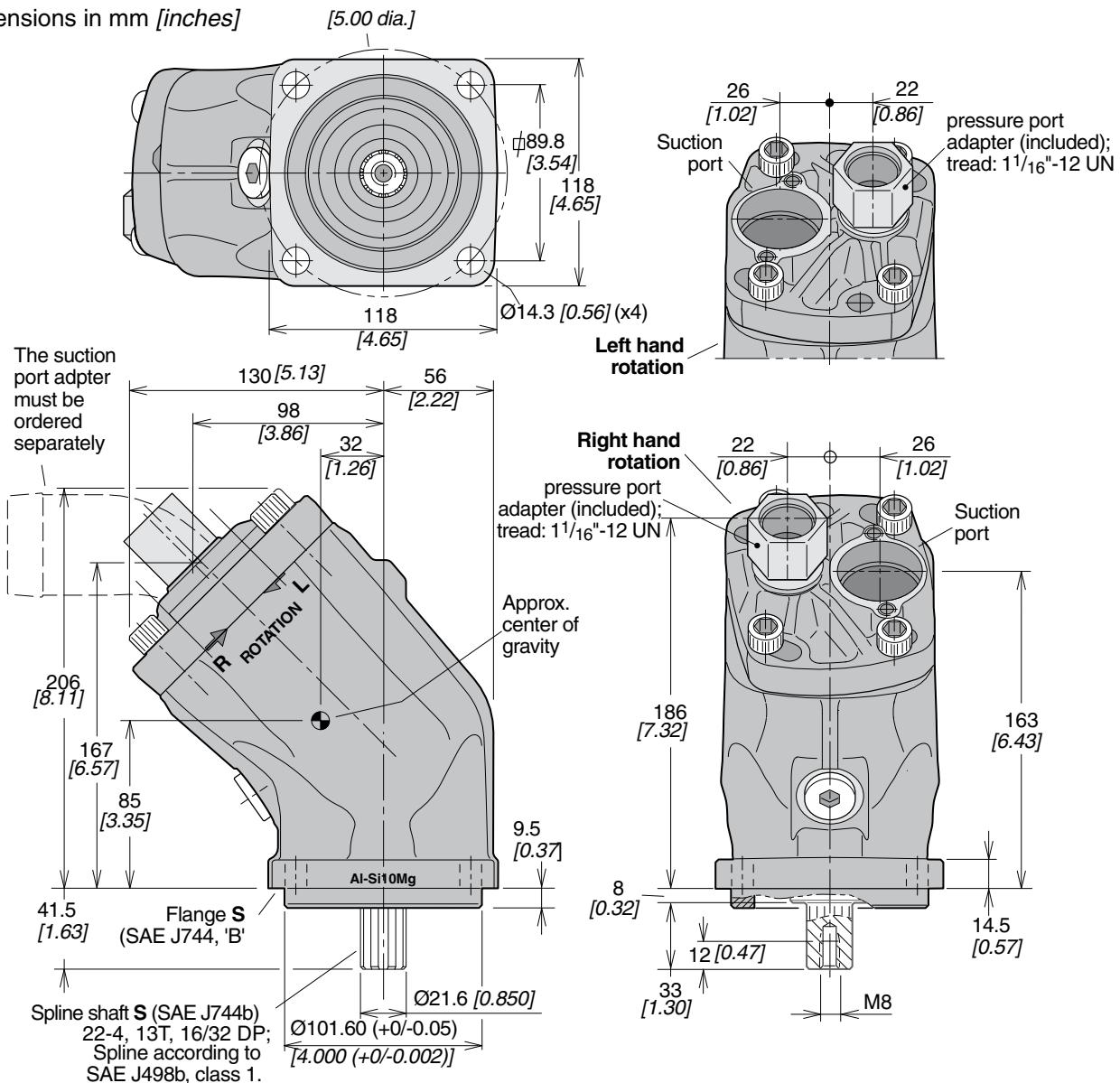
Specifications

F1 frame size	25	41	51	61
Displacement [cm³/rev] [cu in/rev]	25.6 1.56	40.9 2.50	51.1 3.12	59.5 3.63
Max flow¹⁾				
at 350 bar [l/min]	67	98	112	131
at 5000 psi [gpm]	17.7	25.9	29.6	34.6
at 400 bar [l/min]	56	86	97	113
at 5000 psi [gpm]	14.8	22.7	25.6	29.8
Max operating pressure				
continuous [bar]/[psi]	350/5000			
intermittent [bar]/[psi]	400/5800			
Shaft speed [rpm]				
- short circuited pump (low press.)	2700	2700	2700	2700
- max speed at 350 bar ²⁾ /5000 psi ²⁾	2600	2400	2200	2200
at 400 bar ²⁾ /5800 psi ²⁾	2200	2100	1900	1900
Torque¹⁾				
at 350 bar [Nm]	142	227	284	331
at 5000 psi [lbf ft]	105	168	210	244
at 400 bar [Nm]	163	260	324	378
at 5800 psi [lbf ft]	120	192	239	279
Input power				
- continuous [kW]	31	46	52	61
[hp] ³⁾	42	62	70	82
- intermittent [kW] ³⁾	39	57	66	76
[hp] ³⁾	52	76	88	102
Weight [kg] [lbs]	8.5 18.7	8.5 18.7	8.5 18.7	8.5 18.7


1) Theoretical values

2) Valid at an inlet pressure of 1.0 bar/15 psi (abs.) when operating on mineral oil at a viscosity of 30 mm²/s (cSt)/150 SUS.

3) Max 6 seconds in any one minute.


NOTE: For noise level information, contact Parker Hannifin.

Pump cross section

Installation dimensions, F1-25, -41, -51 and -61 (SAE)

Dimensions in mm [inches]

4

Ordering code (SAE)

Example:

F1- 61 - R U - S V - S

F1 frame size
25, 41, 51 or 61

Shaft rotation
R Right hand
L Left hand

Port size

F1 frame size	Pressure port ¹⁾
-25	1 1/16"-12 UN
-41	1 1/16"-12 UN
-51	1 1/16"-12 UN
-61	1 1/16"-12 UN

1) BSP-to-SAE adapter (included).

Standard SAE versions

Designation	Ordering no.
F1-25-R	378 1424
-L	378 1425
F1-41-R	378 1440
-L	378 1441
F1-51-R	378 1450
-L	378 1451
F1-61-R	378 1460
-L	378 1461

NOTE: The pump **does not** include a suction fitting; it must be ordered separately. See chapter 10.

F1 Motor

Contents	Page	Chapter
Pump and Line selection	12	2
Specifications	33	
Ordering code	33	
Installation	33	
Port size	33	
Standard versions	33	
Suction fittings	52	10
Installation and start up	70	13

Specifications

Motor frame size F1-	25-M	41-M	51-M	61-M	81-M	101-M	121-M
Displacement [cm³/rev]	25.6	40.9	51.1	59.5	81.6	102.9	118.5
Max operating pressure [bar]							
- continuous	250						250
- intermittent	350						350
Max shaft speed [rpm]							
- continuous	2 300	2 000	1 800	1 700	1 500	1 400	1 300
- intermittent	3 000	2 700	2 400	2 200	2 000	1 800	1 700
Torque (theor.) [Nm]							
- at 200 bar	81	130	162	189	259	327	376
- at 350 bar	142	227	284	331	453	572	658
Max output power [kW]							
- continuous	20	27	31	34	41	48	51
- intermittent	26	37	41	44	54	62	67
Weight [kg]	8.5	8.5	8.5	8.5	12.5	12.5	12.5

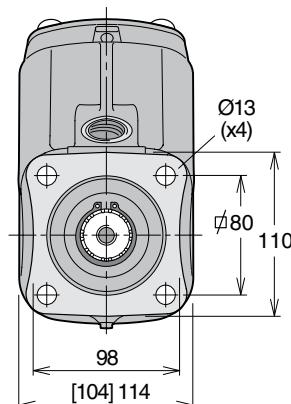
Ordering code

Example:

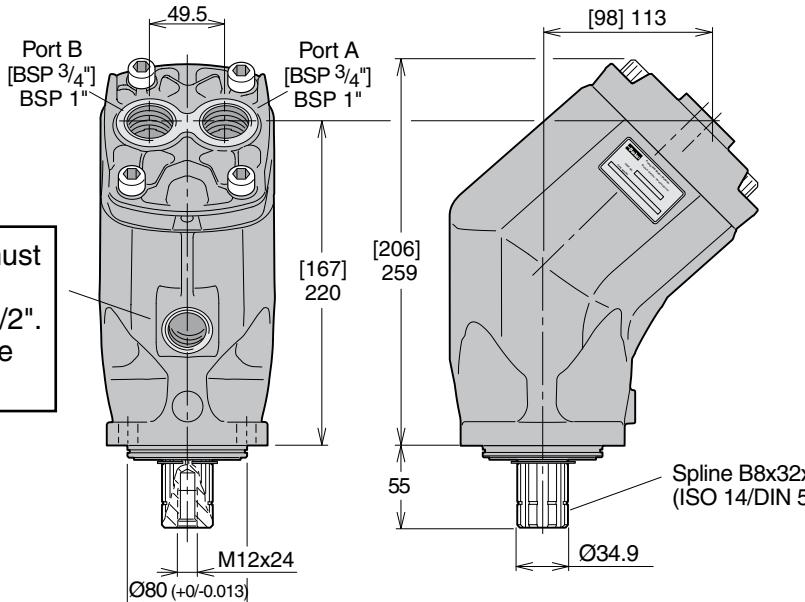
F1 - 81 - M

F1 Motor frame size

25, 41, 51, 61, 81, 101 or 121


Port size

F1 motor frame size Port size
F1-25/41/51/61 **3/4"**
-81/101/121 **1"**

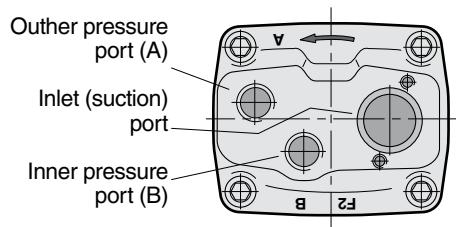

Standard versions

Designation	Ordering no.
F1-25-M	378 1724
-41-M	378 1740
-51-M	378 1750
-61-M	378 1760
-81-M	378 1780
-101-M	378 1800
-121-M	378 4120

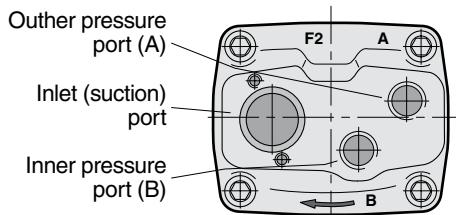
Installation dimensions

NOTE: - Dimensions, in mm, are valid for all frame sizes, except those in brackets [] which are valid for F1-25/41/51/61-M only.

F2 Twin-flow Pump


Contents

	Page	Chapter
Pump and Line selection	12	2
Specifications	35	
Installation Dimensions.....	36	
Ordering code.....	36	
Standard versions.....	36	
Suction fittings	52	10
Installation and start up	70	13


Specifications

Frame size F2-	42/42	53/53	55/28	70/35	70/70
Displacement [cm³/rev]					
Port A	43	54	55	69	68
Port B	41	52	28	36	68
Max operating pressure [bar]					
continuous	350	350	350	350	300
intermittent	400	400	400	400	350
Max shaft speed [rpm] (unloaded pump; low pressure)	2550	2550	2550	2550	2550
Max selfpriming speed [rpm] Ports A ¹⁾ and B ¹⁾ pressurised	1800	1800	1800	1800	1650
Port A ²⁾ unloaded, pressure in port B	2100	2100	2100	2100	2100
Input power [kW]					
Max intermittent ³⁾	100	126	100	126	131
Max continuous	88	110	88	110	112
Weight [kg]	19	19	19	19	19

'Left hand' and 'right hand' end caps

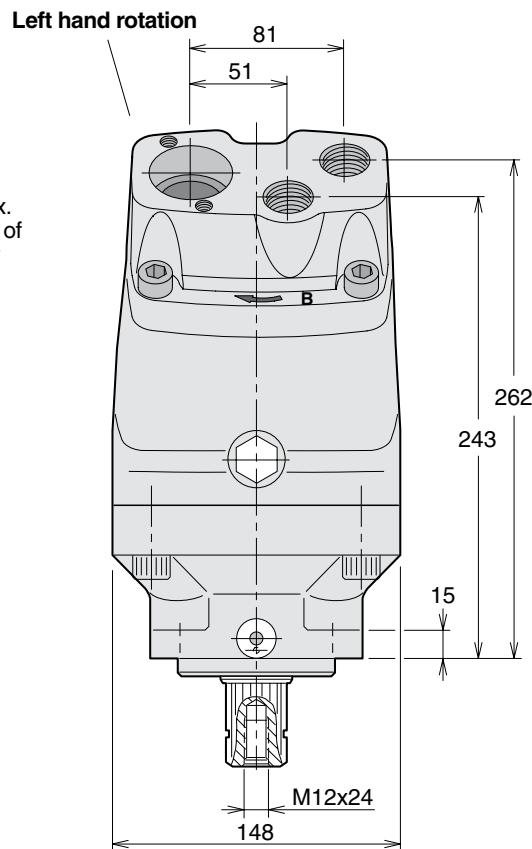
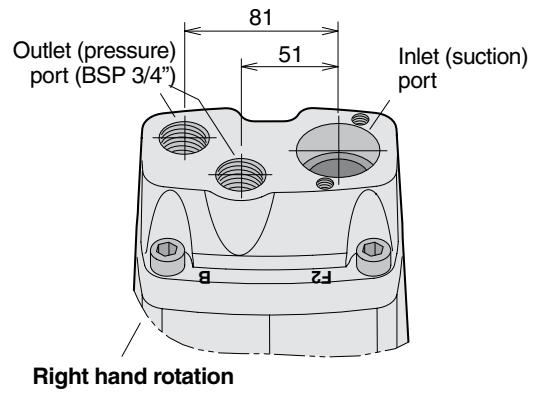
End cap for right hand rotating pump

End cap for left hand rotating pump

1) Valid with 2^{1/2}" inlet (suction) line;
 with 2" inlet line: 53/53 and 70/35 max 1 100 rpm
 42/42 and 55/28 max 1400 rpm. (q≈120 l/min)

2) Measured at 1.0 bar abs. inlet pressure.

Please note: A lower inlet pressure affects pump performance.

3) Max 6 seconds in any one minute.

Flow vs. shaft speed (theoretical)

Pump speed [rpm]	800	1000	1200	1400	1600	1800	1900	2000	2100
F2-53/53 flow [l/min]									
Port A	43	54	65	76	86	97	-	-	-
Port B	42	52	62	73	83	94	99	104	109
Total (ports A + B)	85	106	127	149	169	191	-	-	-
Note: 42/42 values is 80% of 53/53 values									
70/70 values is 130% of 53/53 values									
F2-70/35 flow [l/min]									
Port A	55	69	83	97	110	124	-	-	-
Port B	29	36	43	50	58	65	68	72	76
Total (ports A + B)	84	105	126	147	168	189	-	-	-
Note: 55/28 values is 80% of 70/35 values									

Shaft torque vs. pressure (theoretical)

Pressure [bar]	150	200	250	300	350
F2-53/53 torque [Nm]					
Port A	129	171	214	257	300
Port B	124	165	206	248	289
Total (ports A + B)	253	336	420	505	589
Note: 42/42 values is 80% of 53/53 values					
70/70 values is 130% of 53/53 values					
F2-70/35 torque [Nm]					
Port A	164	219	274	329	383
Port B	86	114	143	171	200
Total (ports A + B)	250	333	417	500	583
Note: 55/28 values is 80% of 70/35 values					

Ordering code

Example: F2 - 53/53 - L

Frame size [cm³/rev]

42/42

53/53

55/28

70/35

70/70

Direction of rotation

L Left hand

R Right hand

Standard versions

Designation	Ordering no.
F2-42/42-R	378 4042
F2-42/42-L	378 4043
F2-53/53-R	378 1453
F2-53/53-L	378 1454
F2-55/28-R	378 4128
F2-55/28-L	378 4129
F2-70/35-R	378 1470
F2-70/35-L	378 1471
F2-70/70-R	378 4070
F2-70/70-L	378 4071

NOTE:

- Before start-up, tighten the inspection port plug to 70–100 Nm.
- To change the direction of rotation, **the end cap must be replaced.**

NOTE: The pump **does not** include a suction fitting; it must be ordered separately. See chapter 10.

T1 Pump

6

7

Contents

	Page	Chapter
Pump and Line selection	12	2
Specifications	38	
Pump cross section	38	
Installation Dimensions.....	39	
Ordering code.....	39	
Standard versions.....	39	
Port size.....	39	
Suction fittings	52	10
Installation and start up	70	13

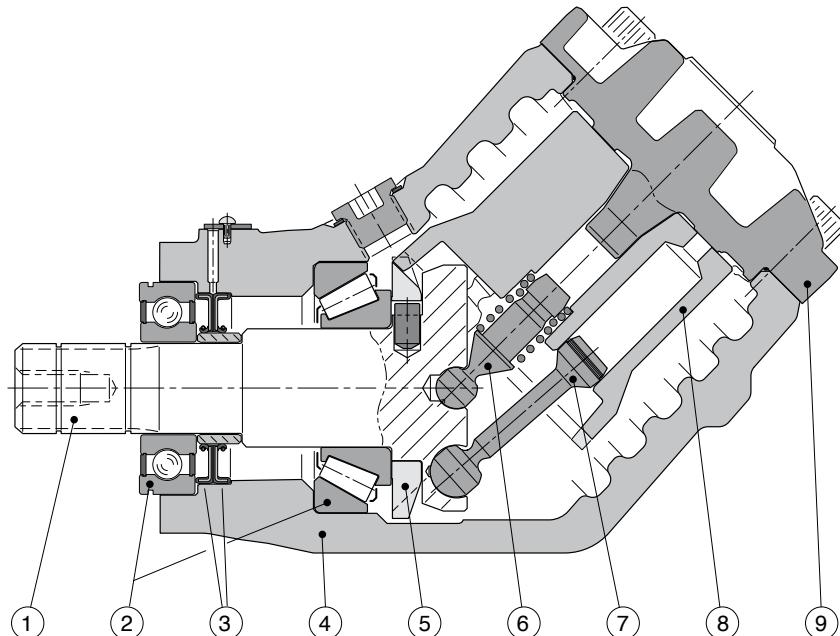
Specifications

T1 frame size	81	121
Displacement [cm³/rev]	81.5	118,5
Max flow¹⁾ [l/min]	163 ³⁾	190 ³⁾
Max operating pressure [bar]		
continuous	250	250
intermittent ⁴⁾	350	350
Shaft speed [rpm]		
short circuited pump (low press.)	2300	2300
max speed ²⁾	2000 ³⁾	1600 ³⁾
Torque¹⁾ [Nm]		
at 200 bar	258	376
at 350 bar	453	658
Input power [kW]		
continuous	54	71
intermittent ⁴⁾	67	89
Weight [kg]	8.5	12.5

1) Theoretical values

2) Valid at an inlet pressure of 1.0 bar (abs.) when operating on mineral oil at a viscosity of 30 mm²/s (cSt).

3) Valid with 2^{1/2}" inlet (suction) line.
 With 2" suction line:
 T1-81 – max 1400 rpm (Q≈120 l/min);
 T1-121 – max 950 rpm (Q≈120 l/min).


4) Max 6 seconds in any one minute.

NOTE:

For noise level information, contact Parker Hannifin.

Pump cross section

(T1-121 shown)

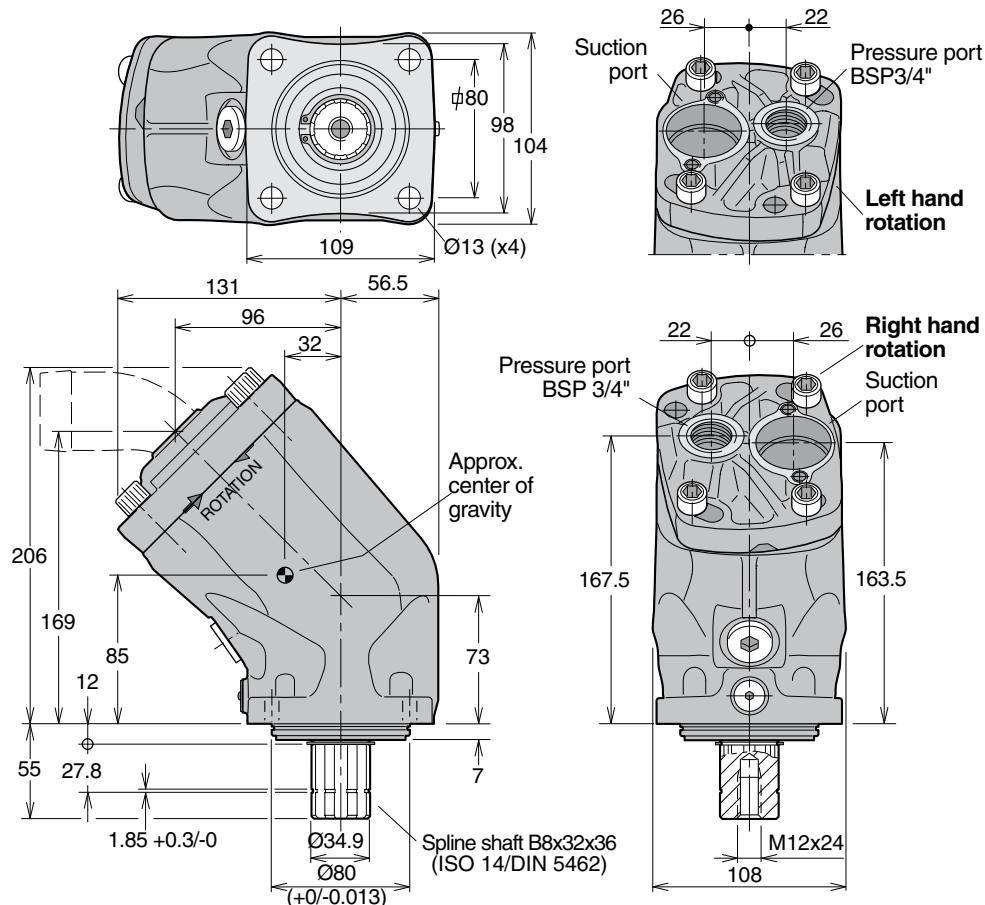
1. Input shaft

2. Bearings

3. Shaft seals

4. Housing

5. Timing gear


6. Barrel support

7. Piston with piston ring

8. Cylinder barrel

9. End cap

T1-81

Ordering code

Example:

T1 - 81 - R

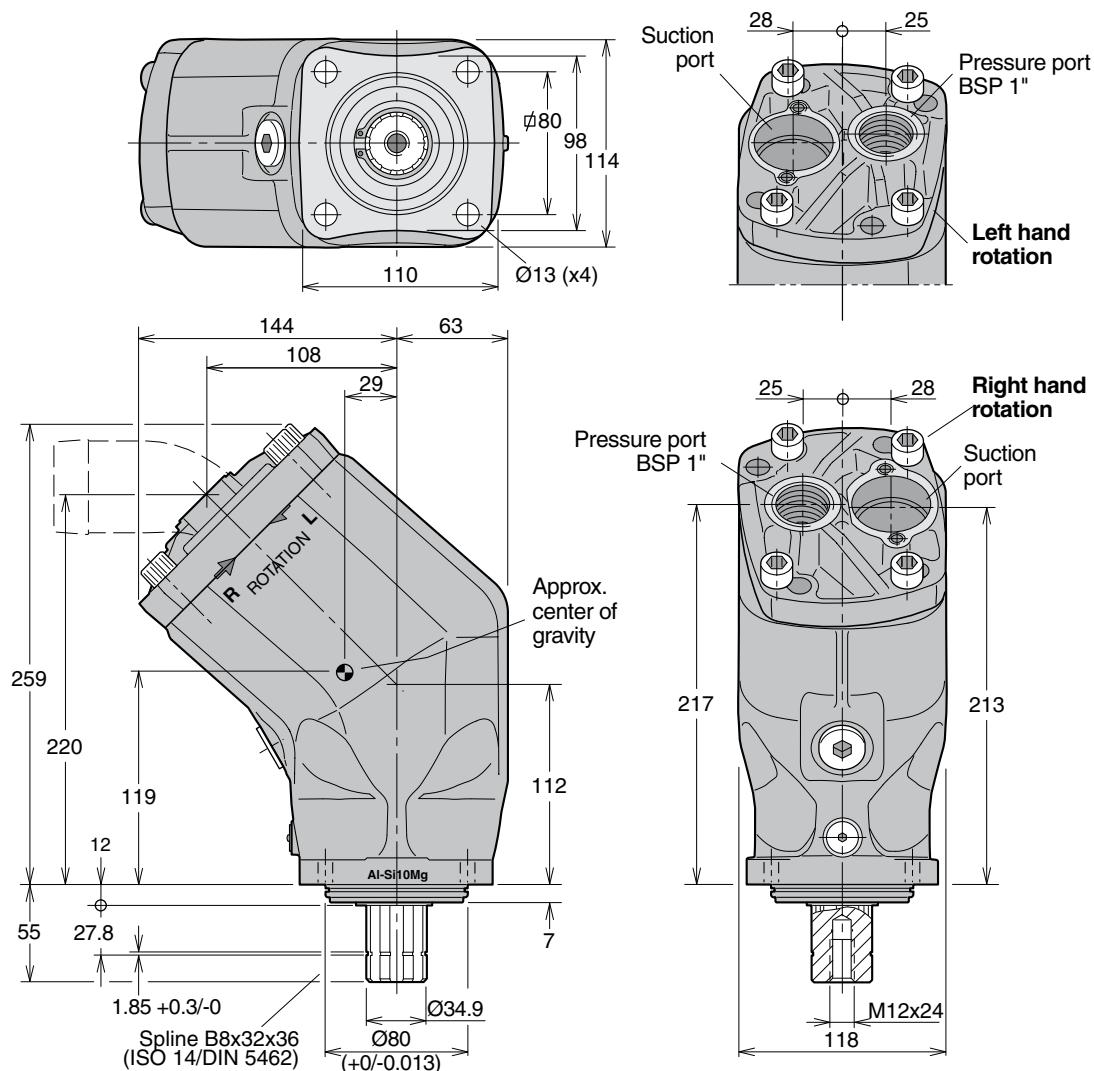
T1 frame size 81 or 121

Shaft rotation R Right hand
L Left hand

Standard versions

Designation Ordering no.

T1-81-R	378 2180
-L	378 2181
T1-121-R	378 2120
-L	378 2121


Port size

T1 frame size Pressure port¹⁾

-81	3/4"
-121	1"

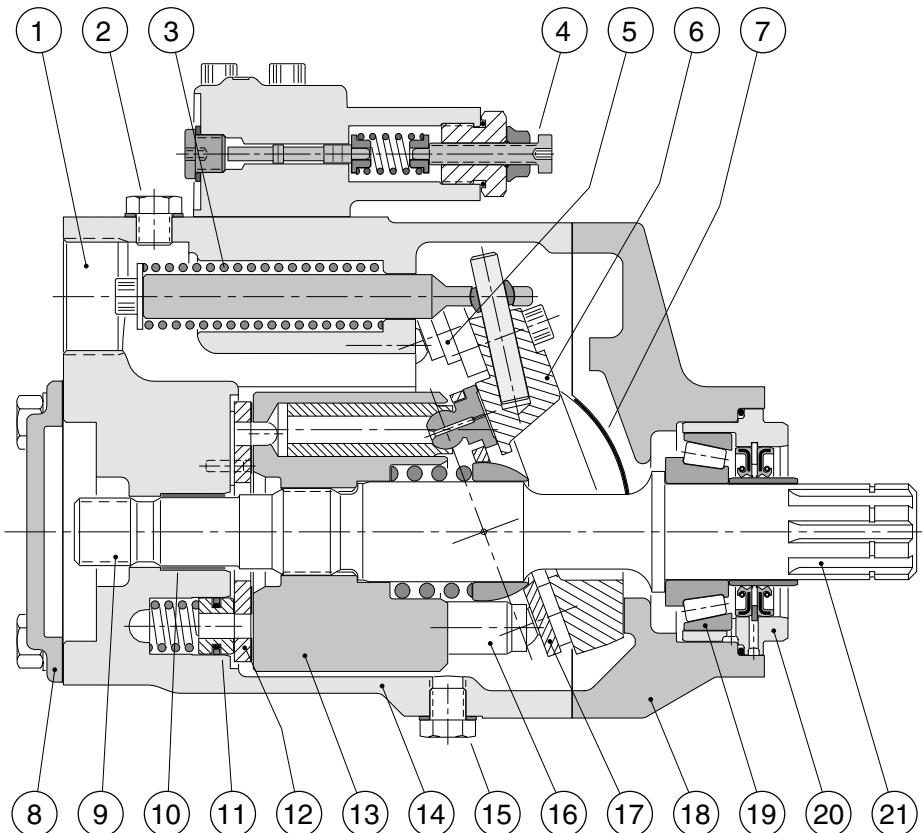
1) BSP thread (fitting not included).

NOTE: The pump **does not** include a suction fitting; it must be ordered separately. See chapter 10.

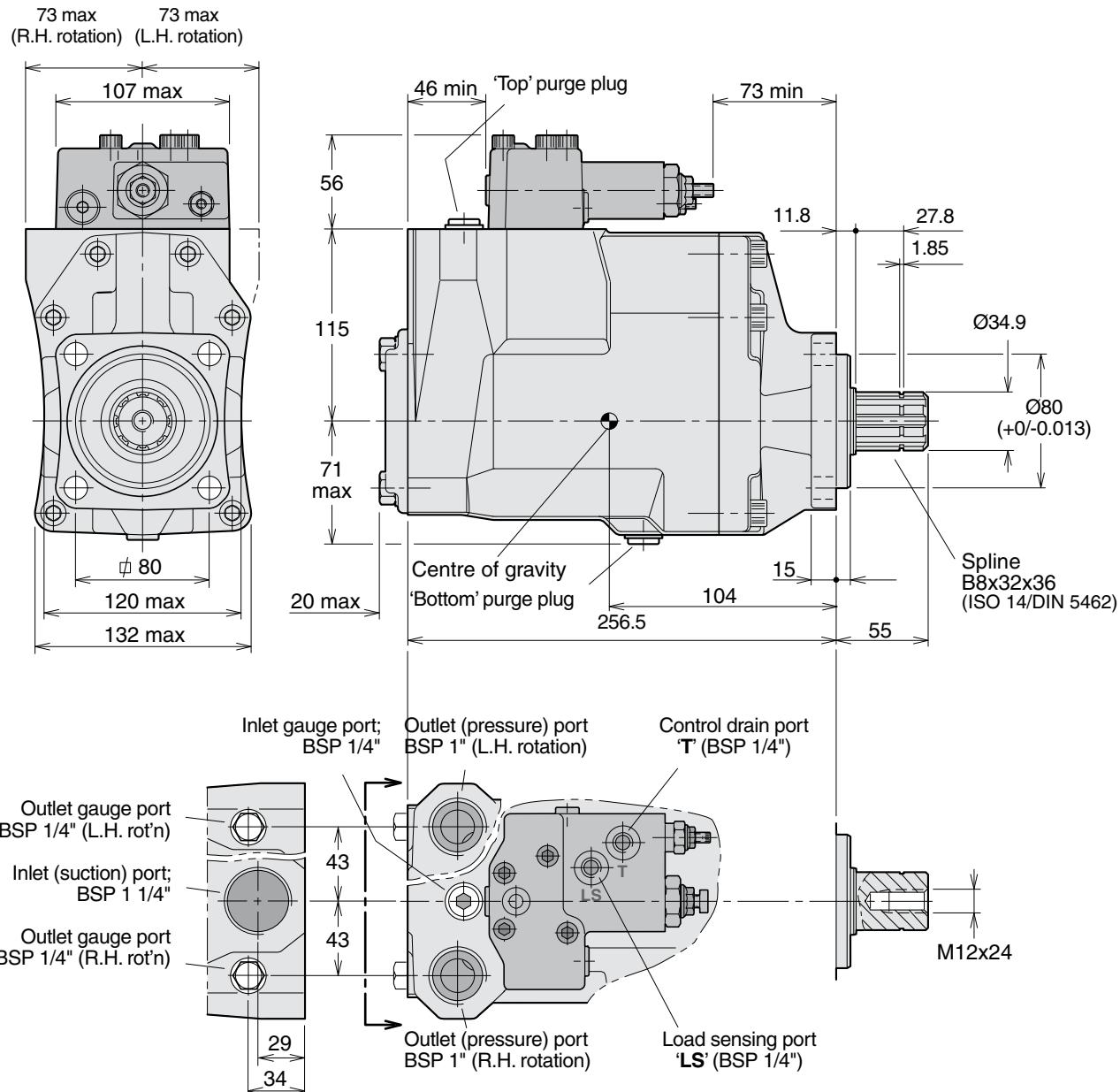
T1-121

VP1 Pump

Contents


	Page	Chapter
Pump and Line selection	12	2
Specifications	42	
VP1-045/-075 cross section	42	
Installation Dimensions, VP1-045 and -075.....	43	
LS valve block VP1-045/075.....	44	
Through-shaft coupling VP1-045/075.....	44	
VP1-095 cross section and LS control (for VP1-095)	45	
Installation Dimensions, VP1-095	46	
VP1-120 cross section and Control valve type LS.....	47	
Installation Dimensions, VP1-120.....	48	
Ordering information.....	49	
VP1 in load sensing systems and Systems comparison	49	
LS load sensing control function and LS control adjustments	50	
Suction fittings	52	10
Installation and start-up for VP1	74	13

Specifications


Frame size	VP1-045	VP1-075	VP1-095	VP1-120	
Max displacement [cm³/rev]	45	75	95	120	
Max pressure [bar]					
continuous	350	350	400	380	1) Max 6 seconds in any one minute.
intermittent ¹⁾	400	400	420	400	
Response time [ms]					2) At an inlet pressure of 1.0 bar (abs.) with mineral oil at a viscosity of 30 mm ² /s (cSt).
max-to-min	20-30	20-40	20-40	20-40	
min-to-max	90-120	100-140	100-140	100-140	
Selfpriming speed²⁾ [rpm]					
2" suction line, max	2200	1700	-	-	
2 1/2" suction line, max	2400	2100	1750	1400	
3" suction line, max	-	-	2200	1900	
Control type	LS				
Shaft end spline	DIN 5462				
Mounting flange	ISO 7653-1985				
Weight (with control) [kg]	27				

VP1-045/-075 cross section

1. Inlet port
2. 'Top' purge plug
3. Return spring
4. Control
5. Setting piston (one of two)
6. Swash plate
7. Bearing shell
8. End cover
9. Spline (for mounting an auxiliary pump)
10. Bearing sleeve
11. Hold-down plunger
12. Valve plate
13. Cylinder barrel
14. Barrel housing
15. 'Bottom' purge plug
16. Piston with piston shoe
17. Retainer plate
18. Bearing housing
19. Roller bearing
20. Shaft seals with carrier
21. Input shaft

VP1-045 and -075

IMPORTANT

IMPORTANT
The control is *not* drained through the pump case. An external line *must be installed* between the control drain port 'T' and the reservoir.

NOTE: The pump **does not** include a suction fitting; it must be ordered separately. See chapter 10.

LS valve block VP1-045/075

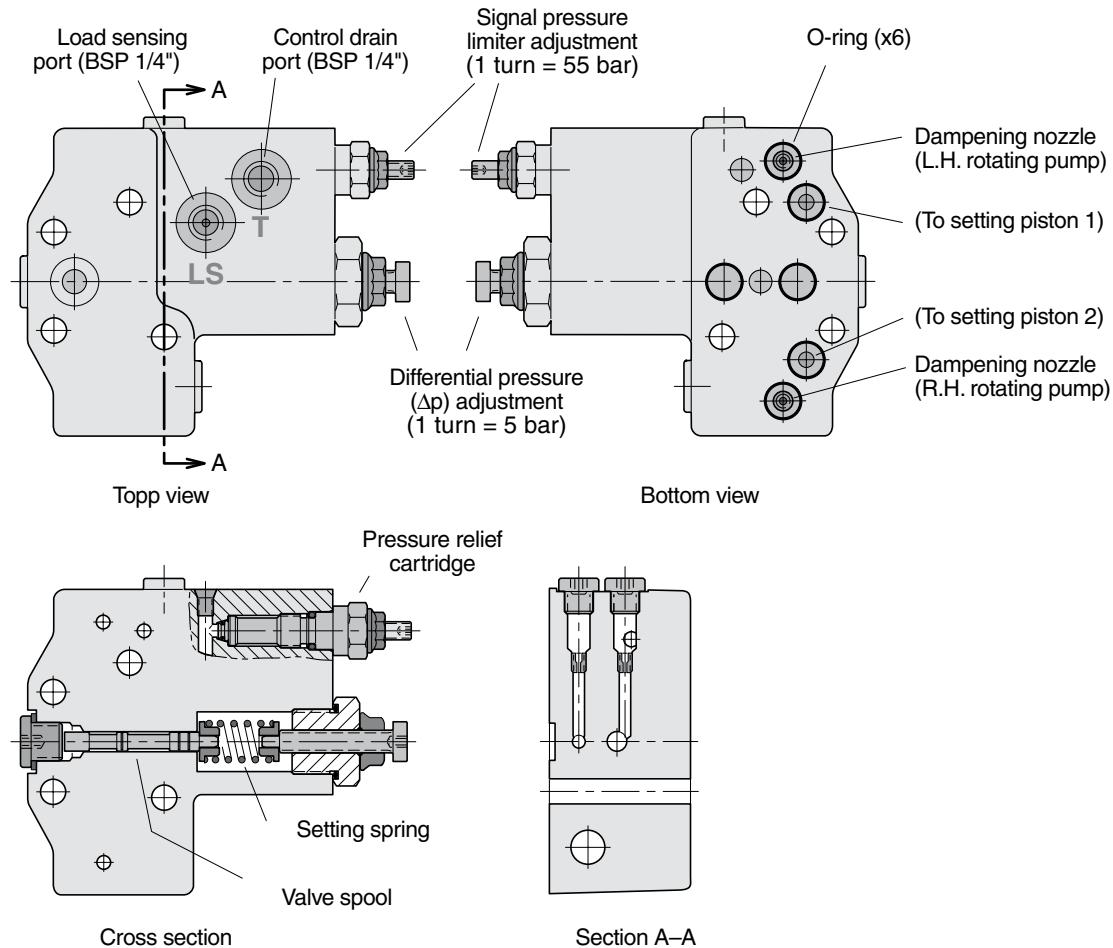


Fig. 2. LS valve block.

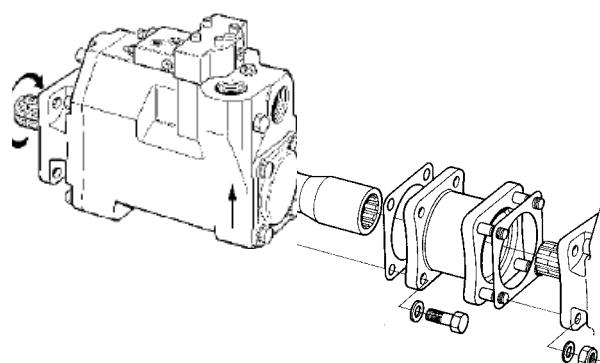
Through-shaft coupling VP1-045/075

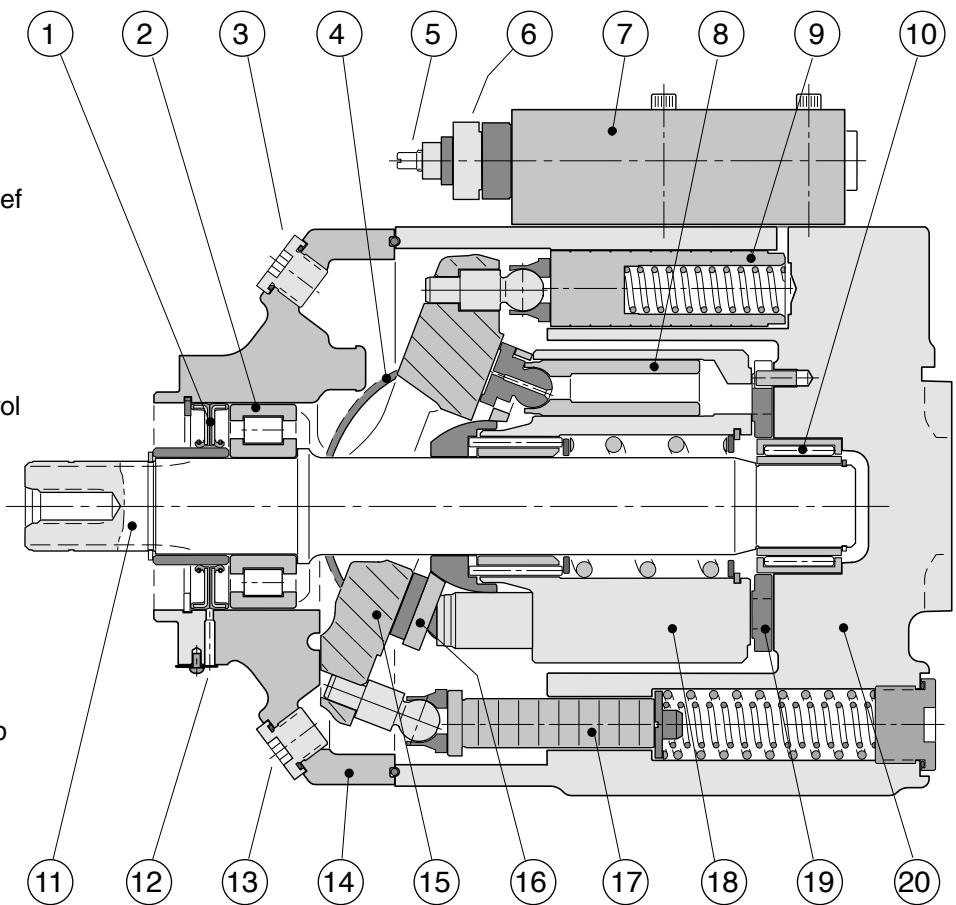
The VP1 pump has a through-shaft which means that an additional pump, such as a fixed displacement F1, can be installed in tandem with the VP1 by means of an adaptor kit (fig. 3).

NOTE: The bending moment caused by the weight of a tandem assembly normally exceeds that allowed by the PTO.

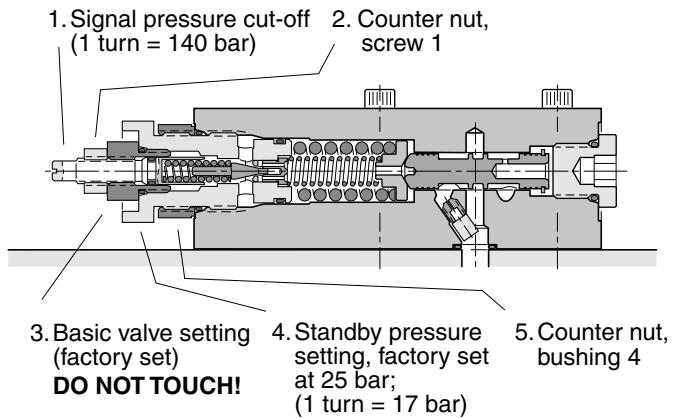
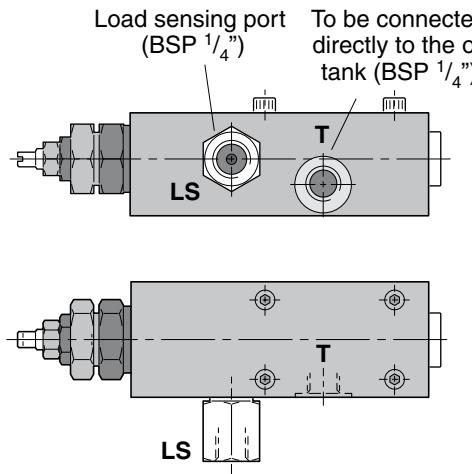
To prevent damage, the auxiliary pump should be supported by a bracket attached to the gearbox; it *must not* be fastened to the truck chassis.

Likewise, when the tandem assembly is installed on a separate bracket and driven by a cardan shaft, the auxiliary pump should have a support attached to the pump bracket.



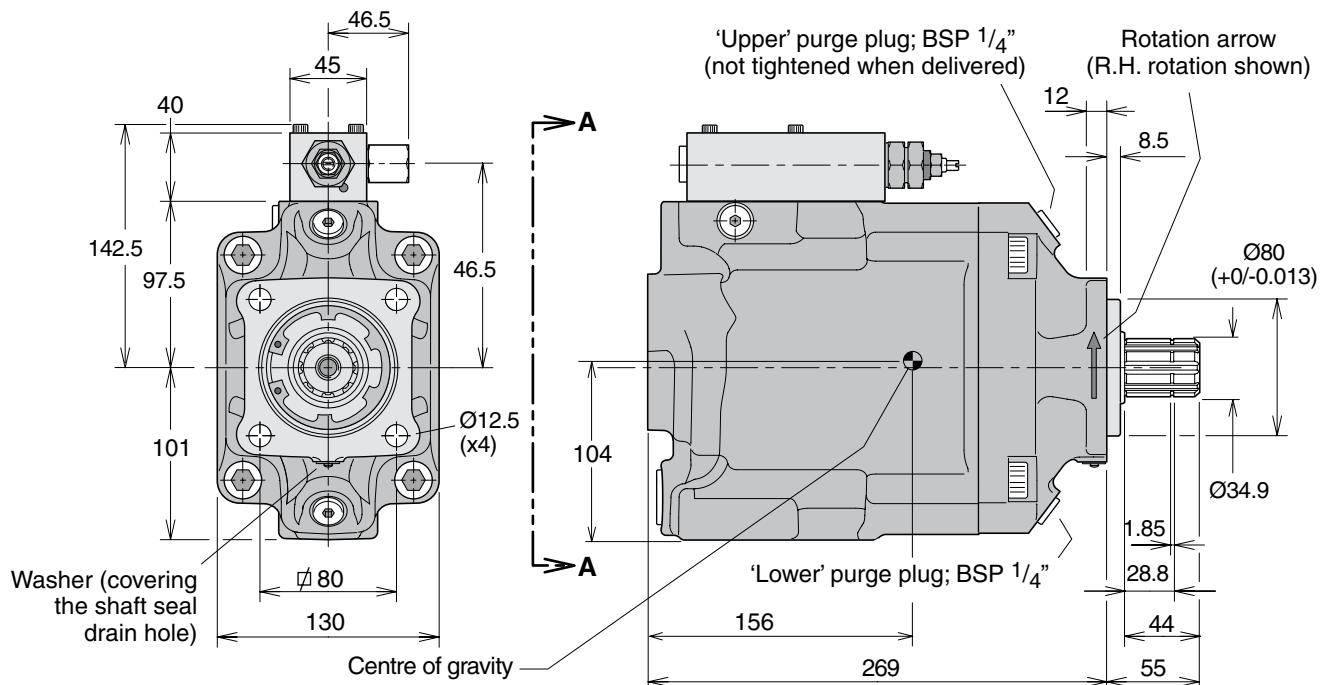

Fig. 3. Adaptor kit (P/N 379 7795) for tandem coupling.

IMPORTANT



Contact Parker Hannifin for additional information when considering tandem mounting a second VP1 pump.

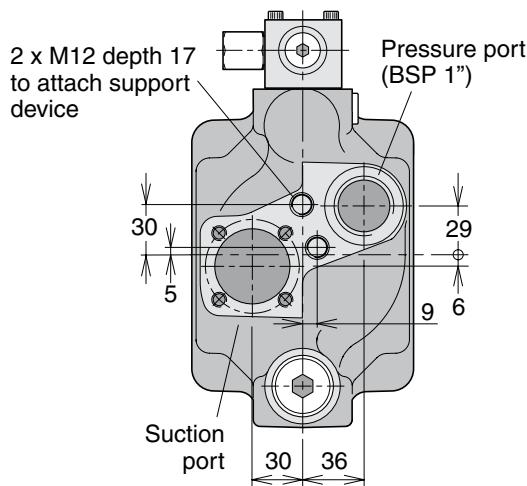
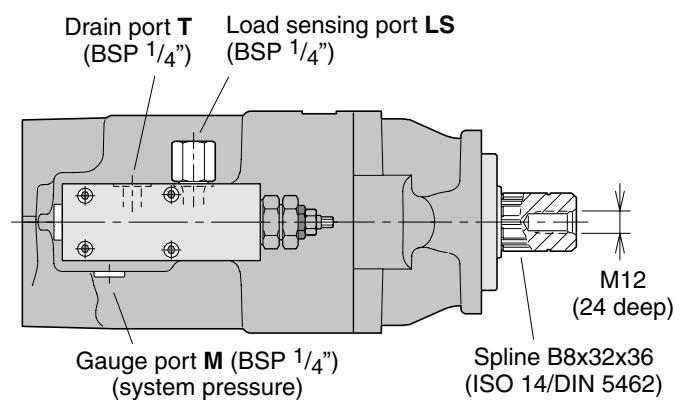
VP1-095 cross section

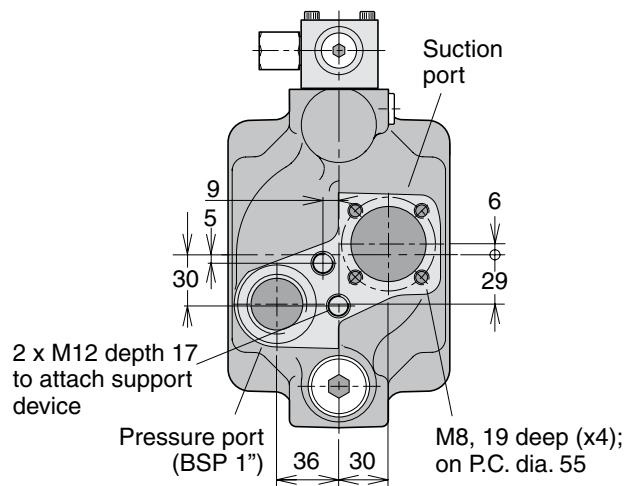
1. Shaft seal
2. Roller bearing
3. 'Upper' purge plug
4. Bearing shell
5. Setting screw (pressure relief valve)
6. Setting bushing (standby pressure)
7. Control
8. Piston with piston shoe
9. 'Upper' setting piston (control pressure)
10. Needle bearing
11. Shaft
12. Drain hole, shaft seals
13. 'Lower' purge plug
14. Bearing housing
15. Swash plate
16. Retainer plate
17. 'Lower' setting piston (pump pressure)
18. Cylinder barrel
19. Valve plate
20. Barrel housing


LS control (for VP1-095)

LS control cross section.

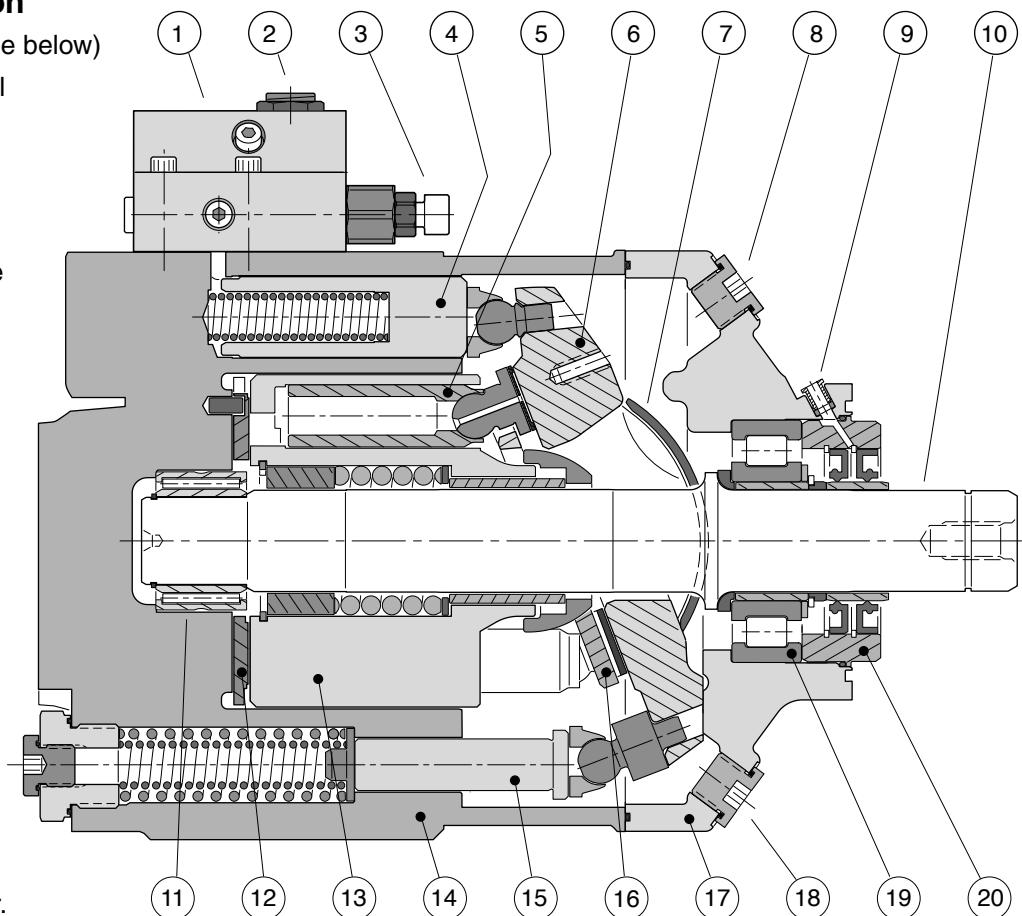
LS control ports.



VP1-095


NOTE: The pump **does not** include a suction fitting; it must be ordered separately. See chapter 10.

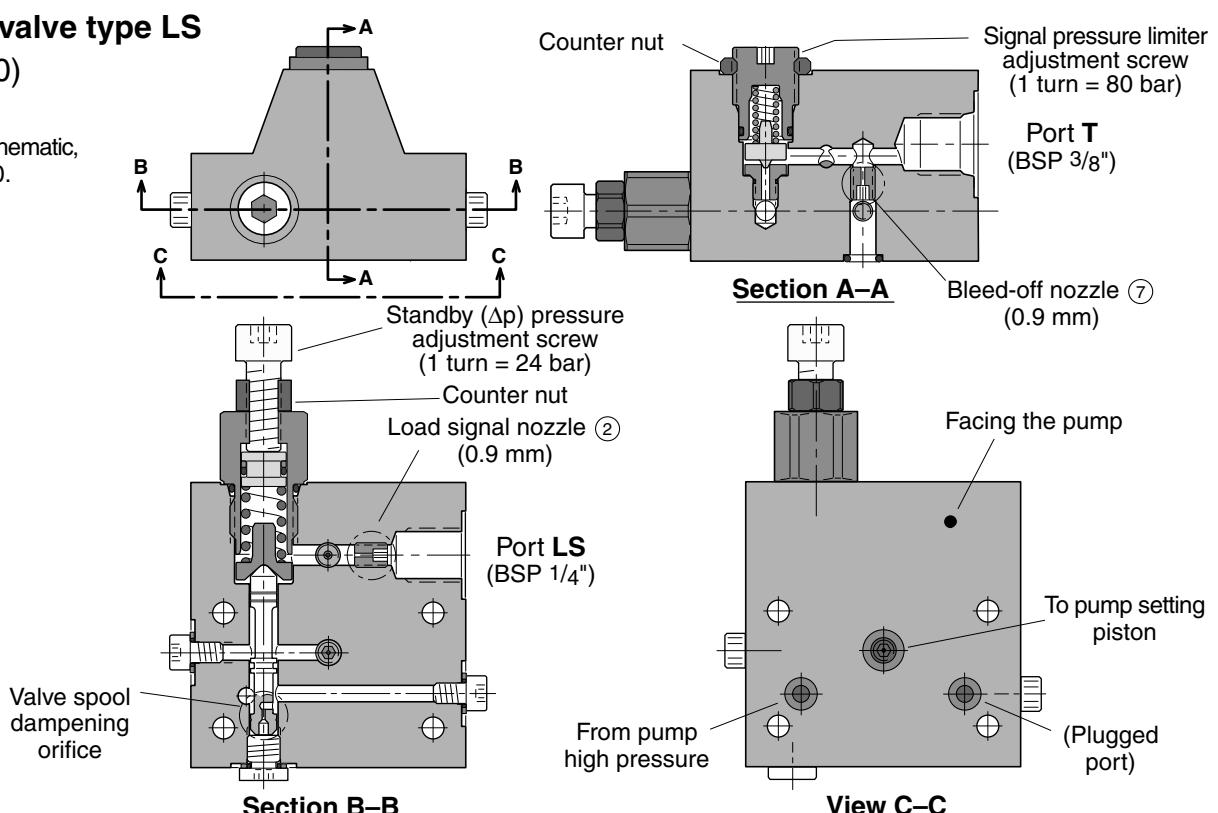
IMPORTANT!

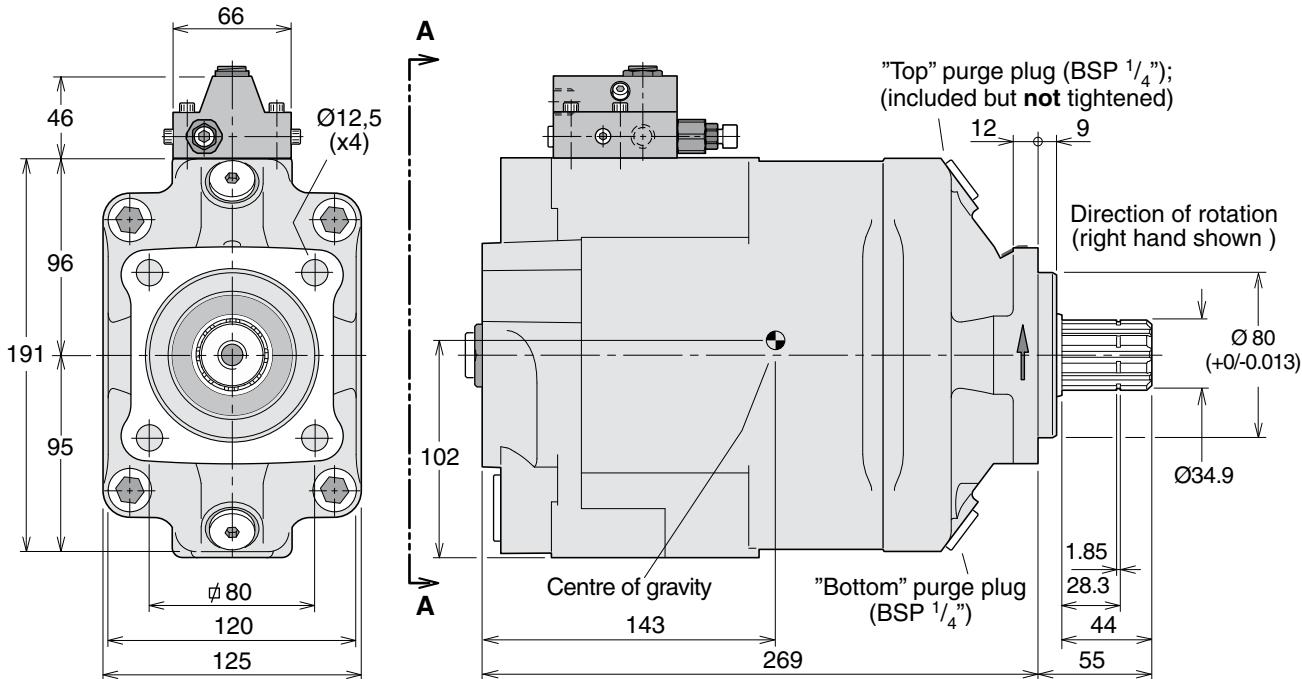
The control is **not** drained through the pump case; an external drain line must be installed from control port T and, directly, to the oil tank.


View A-A
R.H. rotating pump

View A-A
L.H. rotating pump

VP1-120 cross section

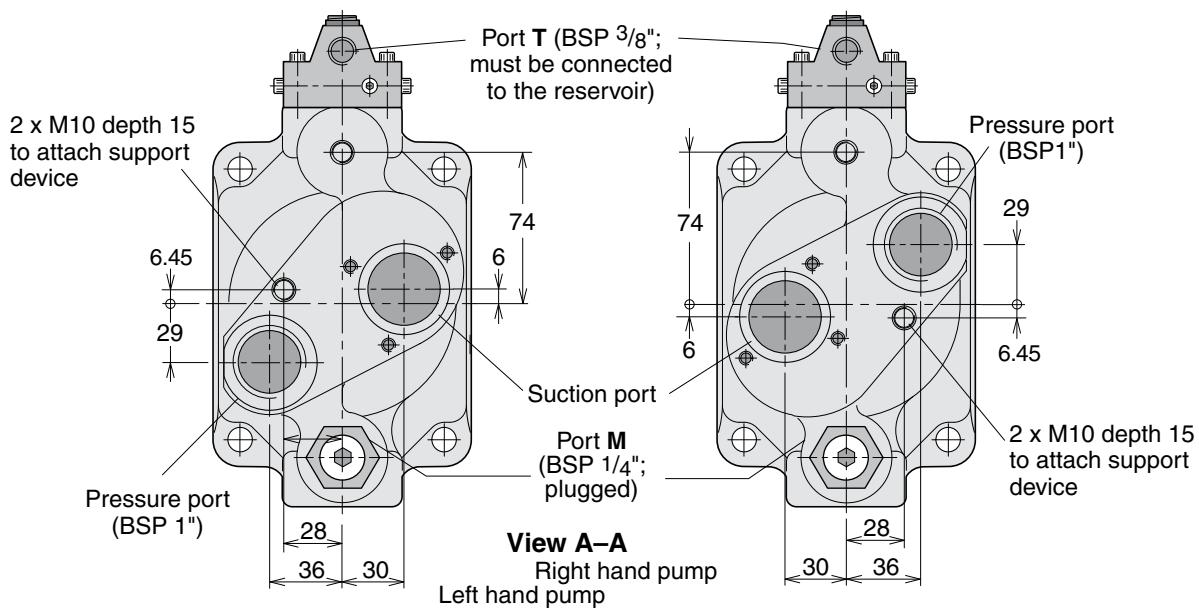
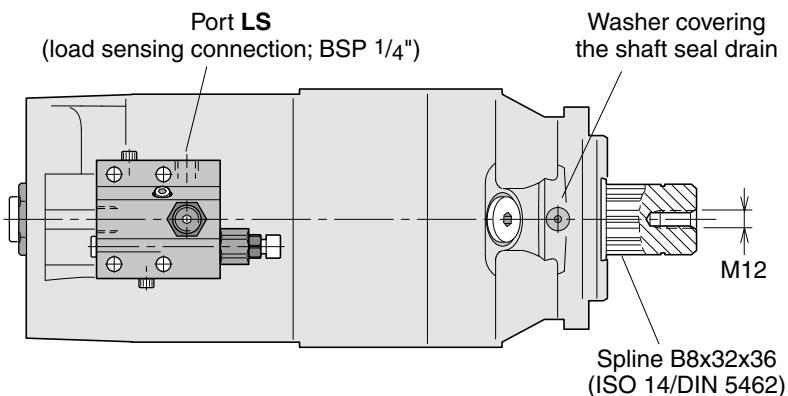

1. Pump control valve (see below)
2. Setting screw for signal pressure limiter
3. Setting screw for stand-by pressure
4. Setting piston
5. Piston with piston shoe
6. Swash plate
7. Bearing shell
8. Purge plug
9. Shaft seal drain
10. Input shaft
11. Needle bearing
12. Valve plate
13. Cylinder barrel
14. Barrel housing
15. Setting piston
16. Retainer plate
17. Bearing housing
18. Purge plug
19. Roller bearing
20. Shaft seals with carrier.


Control valve type LS
(VP1-120)

NOTE:

Hydraulic schematic,
see page 50.

VP1-120

IMPORTANT

The control is **not** drained through the pump case. An external line must be installed between the control drain port 'T' and the reservoir.

NOTE: The pump **does not** include a suction fitting; it must be ordered separately.

See chapter 10.

Ordering information

Example: **VP1 - 045 - L**

Frame size

045, 075, 095 or 120

Direction of rotation

L Left hand

R Right hand

NOTE:

The VP1 is uni-directional. Consequently, the desired direction of rotation must be stated *when ordering*.

Standard model numbers

Designation	Ordering no.
VP1-045-R	378 0334
VP1-045-L	378 0335
VP1-075-R	378 0336
VP1-075-L	378 0337
VP1-095-R	378 6000
VP1-095-L	378 6001
VP1-120-R	378 6848
VP1-120-L	378 6849

VP1 in load sensing systems

When installed in a load sensing system, the VP1 supplies the correct amount of flow required by the various work functions currently engaged.

This means that energy consumption and heat generation are minimised and much reduced in comparison with a fixed displacement pump used in the same system.

Diagram 1 shows the required power (flow times pressure) in a constant flow system with a fixed displacement pump.

Diagram 2 shows the sharply reduced power requirement in a load sensing system with a variable displacement pump such as the VP1.

In both cases the pump pressure is slightly higher than what is required by the heaviest load ('Load 2') but the VP1, because of the much smaller flow being delivered, needs only the power indicated by the shaded area 'Load power'.

In a constant flow system, on the other hand, excess fluid is shunted to tank and the corresponding power, 'Wasted power' (shown in diagram 1), is a heat loss.

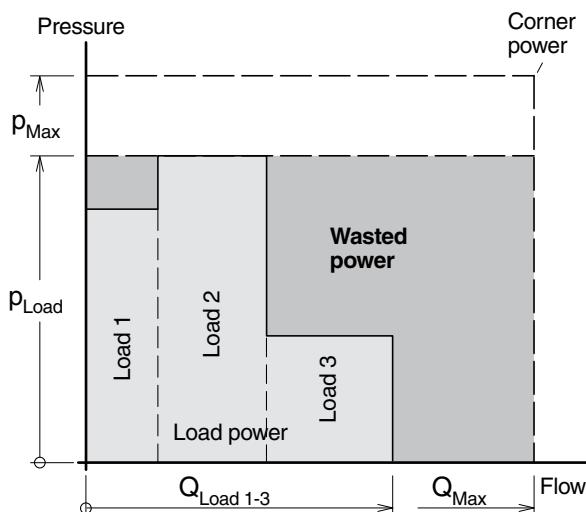


Diagram 1. Constant flow system with a fixed displacement pump.

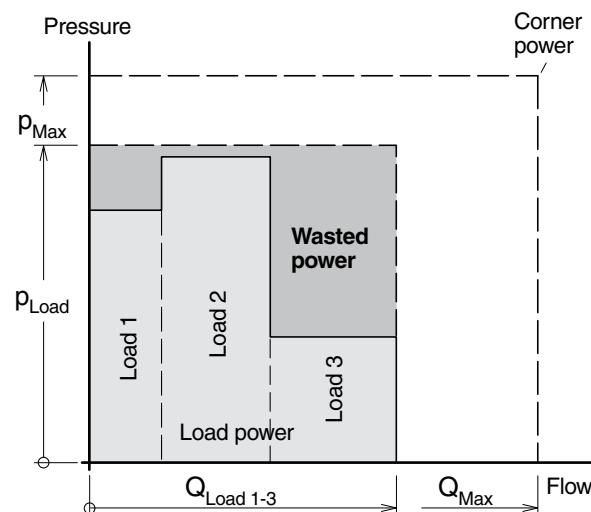


Diagram 2. Constant flow system with a variable displacement pump (e.g. VP1).

Systems comparison

System	Constant flow	Load-sensing
Pump	Fixed displ.	VP1 variable displ.

Pump adjustments	Pressure only	Pressure and flow
Load*	Some influence	Some influence
Energy consumption	High	Low
Heat generation	High	Low

* Simultaneous operation of loads with non-equal flows and pressures; refer to the above diagrams.

LS load sensing control function

Refer to corresponding hydraulic schematic below.

A selected 'opening' of the directional control valve spool corresponds to a certain flow to the work function. This flow, in turn, creates a pressure differential over the spool and, consequently, also a Δp between the pump outlet and the LS port.

When the differential pressure decreases (e.g. the directional valve is 'opened' further) the Δp also decreases and the LS valve spool moves to the left. The pressure to the setting pistons then decreases and the pump displacement increases.

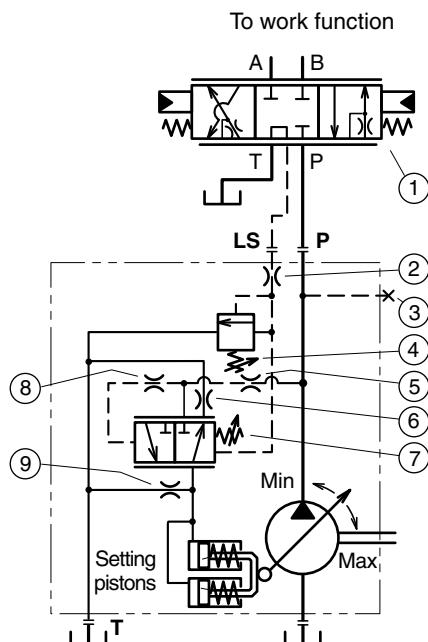
The increase in pump displacement stops when the Δp finally reaches the setting (e.g. 25 bar) and the forces acting on the valve spool are equal.

If there is no LS signal pressure (e.g. when the directional valve is in the neutral, no-flow position) the pump only delivers sufficient flow to maintain the standby pressure as determined by the Δp setting.

LS control adjustments

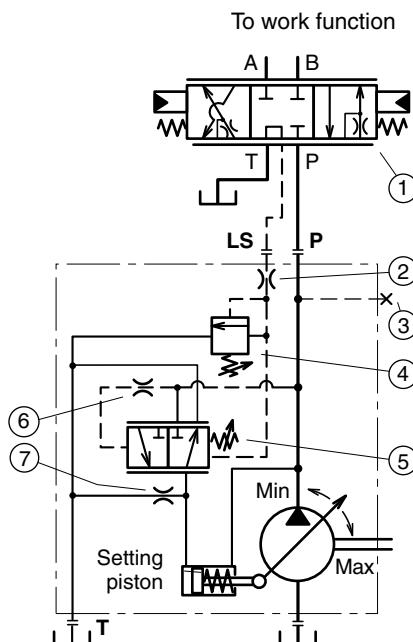
Pressure limiter

Pump size	Factory setting [bar]	Max pressure [bar]
VP1-045/075	350	400
VP1-095	350	420
VP1-120	300	400

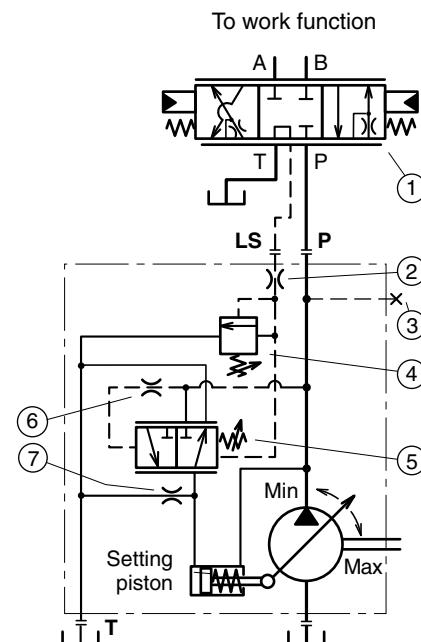

LS load sensing valve

Pump size	Factory setting [bar]	Min pressure [bar]	Max pressure [bar]
VP1-045/075	25	20	35
VP1-095	25	15	40
VP1-120	35	25	40

The factory setting, and the standard orifice sizes shown in the corresponding schematic below, will usually provide an acceptable directional valve characteristic as well as system stability.


For additional information, contact Parker Hannifin.

Hydraulic schematic for VP1-45/75


1. Directional, load sensing control valve
2. Load signal orifice (1.0 mm; fixed)
3. Gauge port
4. Signal pressure limiter adjustment
5. System pressure dampening nozzle (2.0 mm)
6. Return line nozzle (0.6 mm)
7. Standby (Δp) pressure adjustment
8. System pressure dampening orifice (fixed)
9. Bleed-off nozzle (0.6 mm).

Hydraulic schematic for VP1-095

1. Directional, load sensing control valve
2. Load signal orifice (0.8 mm)
3. Gauge port
4. Signal pressure limiter adjustment
5. Standby (Δp) pressure adjustment
6. System pressure dampening orifice (fixed)
7. Bleed-off nozzle (1.2 mm)

Hydraulic schematic for VP1-120

1. Directional, load sensing control valve
2. Load signal orifice (0.9 mm)
3. Gauge port
4. Signal pressure limiter adjustment
5. Standby (Δp) pressure adjustment
6. System pressure dampening orifice (fixed)
7. Bleed-off nozzle (0.9 mm)

BLA

General information

The BLA boost unit simplifies the building of closed or semi-closed hydrostatic transmissions.

Main features are:

- Replaces conventional charge pump and corresponding valves in many applications
- Allows pump speeds above normal selfpriming speed
- Suitable for system flow rates to 400 l/min
- Includes filter
- Simple construction - no moving/wear parts
- Cost-effective installation
- Small tank size
- Helps in building a low-cost hydrostatic transmission.

Description

In a closed circuit hydrostatic transmission, a charge pump is normally included with the main pump, providing make-up fluid which replaces pump and motor volumetric losses. It also maintains sufficient pump inlet pressure to avoid cavitation.

The BLA boost unit replaces the charge pump in many applications, when the following conditions are met:

- The max-to-min pump flow ratio does not exceed 2:1
- System pressure changes gradually without frequent and pronounced pressure peaks
- The line length between pump and boost unit is relatively short.

There are two basic sizes of the BLA boost unit:

- BLA 4 (to 160 l/min pump flow)
- BLA 6 (to 400 l/min).

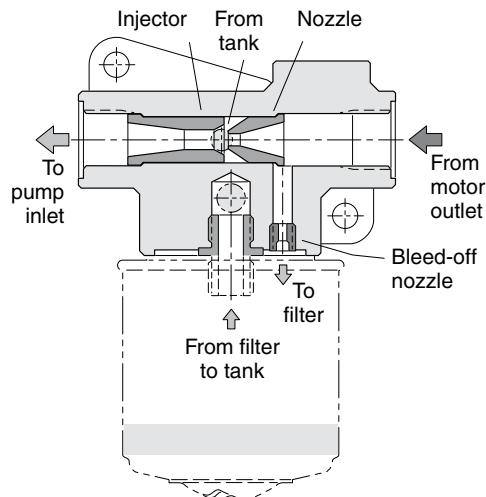
The main part of the unit is an aluminium housing with a built-in nozzle and an injector; refer to the cross section to the right.

When fluid flows from the motor outlet port through the unit and to the pump inlet port, the increased fluid velocity between the nozzle and injector creates a low pressure zone causing additional fluid to be drawn from tank into the main circuit.

Also, pressure increases after the injector, allowing the pump to be operated at speeds higher than the self-priming speed. The 'boost pressure' increases with flow.

The housing includes ports that should be connected to the pump and motor drain ports respectively.

An additional bleed-off nozzle diverts approx. 10% of the main flow through the cartridge filter before being directed to the tank.

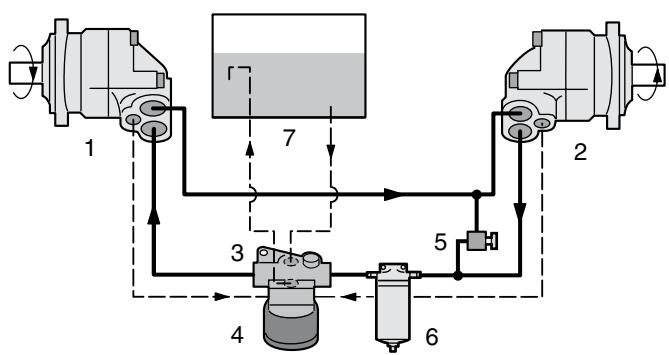

For more information please see our technical catalogue BLA boost unit HY17-8224/UK

Typical applications:

- Fan drives
- Propeller drives
- Generator drives
- Pump drives.

Oil cooling

An oil cooler is usually required in the hydraulic system, in order to remove the heat that is generated in the main circuit. A full-flow oil cooler should be installed in the return line between the motor and the boost unit.



BLA boost unit cross section.

8

9

Boost unit installation

1. Pump	5. Pressure relief valve
2. Motor	6. Full-flow filter (when required)
3. Boost unit (with injector and nozzle)	7. Reservoir
4. Filter cartridge	

Suction fittings

for series F1, F2 and T1 pumps also VP1-095 and -120

A 'suction fitting' consists of a straight, 45°, 90° or 135° suction fitting, clamps, cap screws and O-ring.

Suctions fittings for VP1-045/075 see page 53.

'Straight' suction fittings for F1, F2, T1, VP1-095/-120

Ordering no.	A mm	B mm	C dia. mm (in.)
378 0635 ¹⁾	0	85	38 (1 1/2")
378 0636 ²⁾	17	136	50 (2")
378 0637 ³⁾	25	145	63 (2 1/2")
378 3523 ³⁾	32	174	75 (3")

45° suction fittings for F1, F2, T1, VP1-095/-120

Ordering no.	A mm	B mm	C dia. mm (in.)
378 1234 ¹⁾	60	104	32 (1 1/4")
378 0633 ¹⁾	60	104	38 (1 1/2")
378 0364 ²⁾	67	110	50 (2")
378 0634 ³⁾	75	117	63 (2 1/2")
378 3367 ³⁾	95	138	75 (3")
378 1062	67	110	40
378 0975	67	110	45
378 0965	67	110	48

90° suction fittings for F1, F2, T1, VP1-095/-120

Ordering no.	A mm	B mm	C dia. mm (in.)
378 0978 ¹⁾	126	83	38 (1 1/2")
378 0979 ²⁾	135	83	50 (2")
378 1980 ³⁾	147	83	63 (2 1/2")
378 0976	135	83	45

145° suction fitting for F1, F2, T1, VP1-095/-120

Ordering no.	A mm	B mm	C dia. mm (in.)
378 1867	165	73	50 (2")

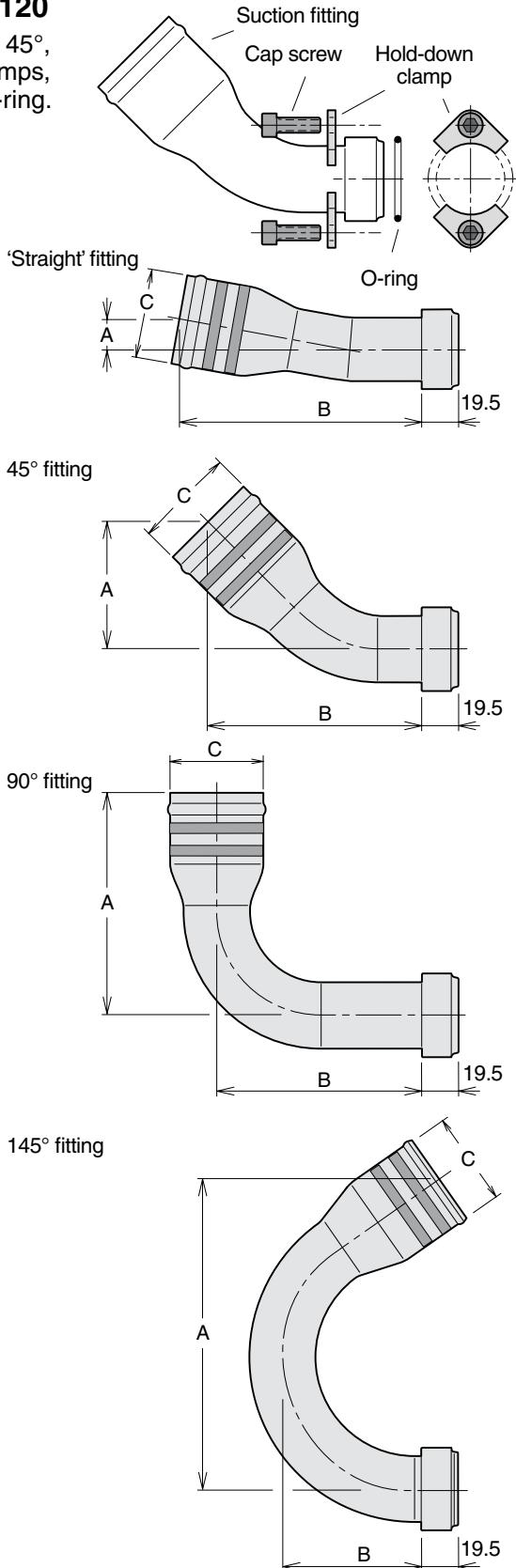
1) Recommended for frame size F1-25.

2) Recommended for frame size F1-41,-51,-61,-81, -101.

3) (3 clamps and 3 screws)

Spare parts

Additional Hold-down-clamp kit consists of:

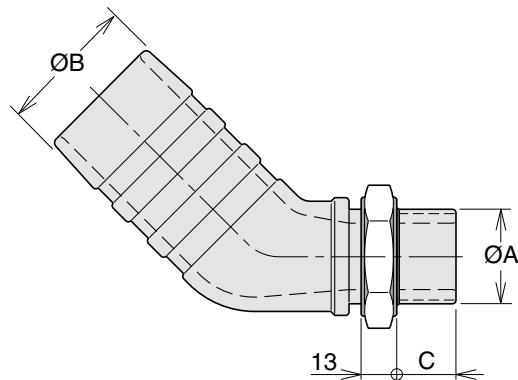

hold-down-clamp cap screw and O-ring

Ordering no. 378 1321

Additional Hold-down-clamp kit for mounting on BPV

Ordering no. 378 2439

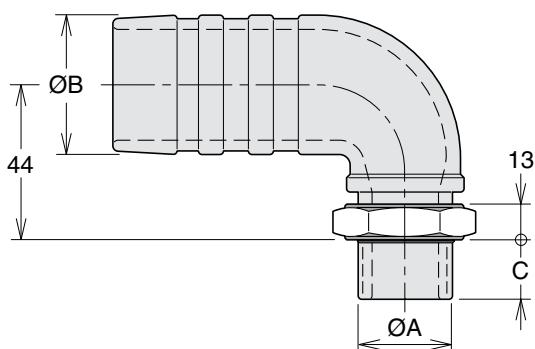
NOTE: A suction fitting *must be ordered separately* (not included with the pump).
To choose the correct dimension of suction connection, see chapter 2.



Suitable suction adapters for F1 with BSP port treads

45° adapter

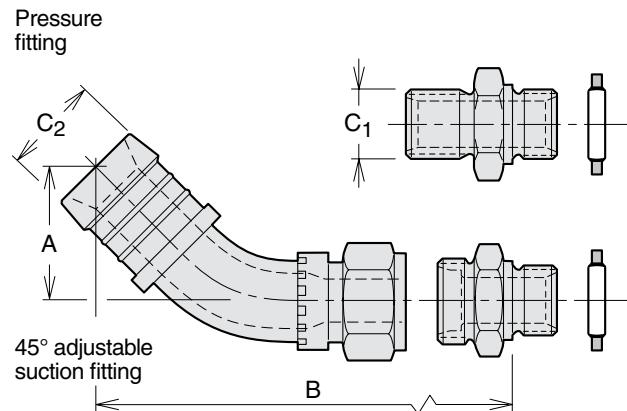
Ordering no.	A*	B	C
00509035016	1"	2"	18
00509035116	1 1/4"	2"	18
00509021916	1 1/4"	2 1/2"	18


* BSP threads

90° adapter

Ordering no.	A*	B	C
00509034516	1"	2"	18
00509034616	1 1/4"	2"	18

* BSP threads



Fitting kits for VP1-045 and -075 pumps

Kits with 45° suction fitting

Pump size	Ordering no.	C ₁	ØC ₂	A	B
VP1-045/075	379 9563	BSP 3/4"	2"	71	154
VP1-045/075*	379 9562	BSP 1"	2 1/2"	64	147

* Above 100 l/min

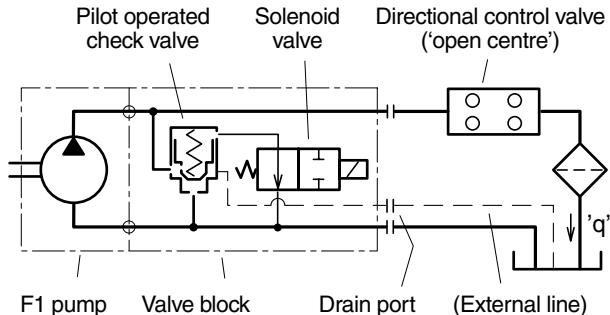
NOTE: A suction fitting *must be ordered separately* (not included with the pump).
 To choose the correct dimension of suction connection, see chapter 2.

Auxiliary Valves

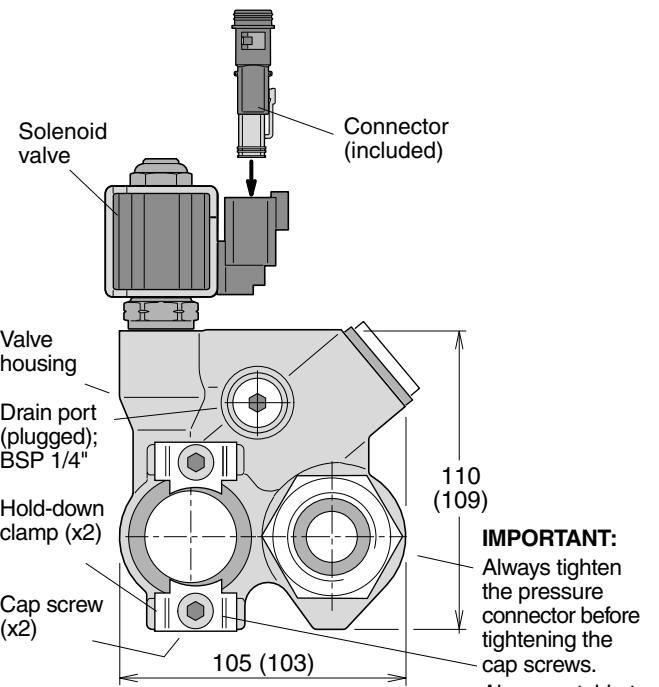
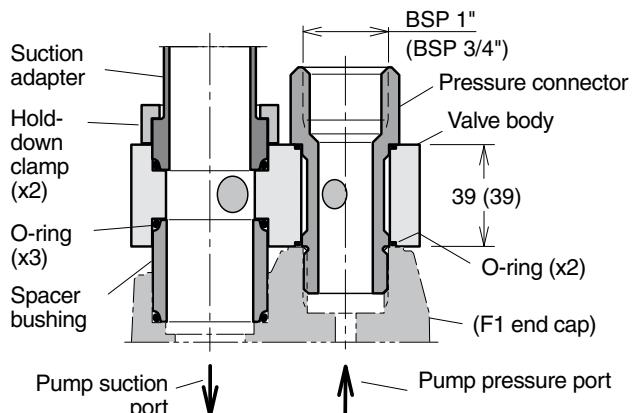
**Bypass Valves and Unloading Valves for
F1, F2, T1 and VP1 pumps**

Contents	Page
Bypass Valves	
BPV-F1-25 and -81 bypass valve	55
BPV-F2 bypass valve.....	56
BPV-T1-81 and -121 bypass valve	57
Unloading Valves	
BPV-L line mounted bypass valve	58
BPV-VP1 unloading valve.....	59-60

BPV-F1-25 and -81 bypass valve


- The bypass valve is mainly utilised in applications where the F1 pump is driven from the crank-shaft through a cardan shaft, or when it is installed on an engine PTO.
- The BPV bypass valve should be engaged during transportation when the pump is operating constantly and the engine is running at max rpm; the hydraulic system is not sized for the large flow that would otherwise go through it.
- The BPV valve substantially reduces the energy loss during transportation.
- The valve installs directly on top of the pump end cap with a pressure port 'banjo' fitting and an inlet port spacer bushing with two cap screws; refer to the illustration to the right.
- As the BPV valve is symmetrical, it can be 'turned 180°' to prevent interference with chassis components; it can be utilised for either left hand or right hand pumps.
- The valve function must only be activated or released (by means of the 24 VDC solenoid) at *no-load* (below 20 bar) *system pressure*.

IMPORTANT INFORMATION



- In order to prevent heat build-up in the pump during transportation, it is important that at least 5 l/min comes out of the filter at 'q' (refer to the schematic). This applies to an 'open center' system when the valve is in the bypass mode (non-activated solenoid).
- Please note:*
 - If the flow at 'q' is less than 5 l/min (caused e.g. by a high pressure drop in the main system) when the valve is in the bypass mode, or*
 - if the hydraulic system is of the 'closed center' type, then an external drain line **must be installed** from the bypass valve drain port directly to tank as shown in the schematic; a drain kit is available (see below).*

Bypass valve, type BPV-F1-25/-81

Max pressure, continuous [bar] intermittent [bar]	350 400
Solenoid voltage [VDC]	24
Power requirement [W]	17
Operating mode	Activated solenoid: Check valve closed
Bypass valve kits	Ordering number
BPV-F1-25, 24 VDC 12 VDC	378 7201 378 7202
BPV-F1-81, 24 VDC 12 VDC	378 7203 378 7204
O-ring kit	378 0641
Drain fitting kit F1-025	378 1640
Drain fitting kit other F1 and F2	378 3039
	Contains all five O-rings (as illustrated to the right); included in all valve kits
	Contains a drain line fitting a bonded seal and nozzle.
	Contains a drain line fitting and a bonded seal.

Bypass valve schematic.

IMPORTANT:
Always tighten the pressure connector before tightening the cap screws.
Also, see table to the left.

NOTE: Dimensions are shown for BPV-F1-81
(those for BPV-F1-25 are in parenthesis)

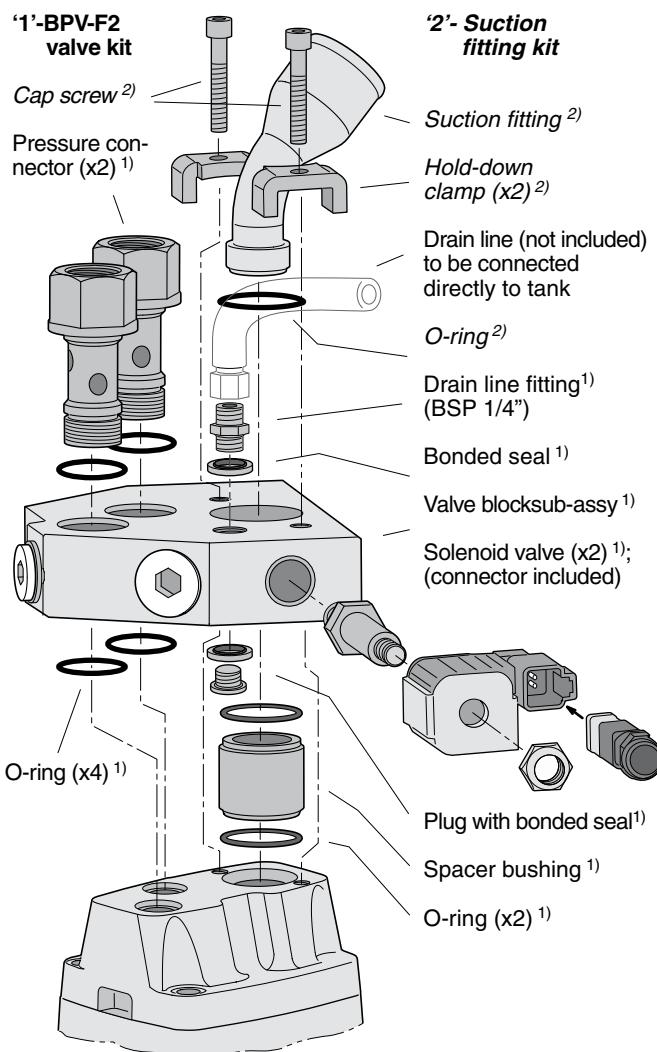
Bypass valve installation and cross section.

BPV-F2 bypass valve

- An F2 twin pump fitted with a bypass valve can be utilised in applications where the pump is operating constantly i.e. when the pump is driven from the crank shaft through a cardan shaft, or when it is installed on an engine-PTO. In addition, it can be used when, temporarily, one of the two circuits is not required; the power loss is thus reduced as the non-required flow is not forced through lines and 'open center' valves.
- In most cases, the bypass valve allows the pump to be driven at max engine rpm during transportation at a minimum load. This prevents pump cavitation and high heat generation which may otherwise be encountered at large flows.
- The BPV valve connects the outlet and inlet ports of the pump, and only a small oil flow goes through the system and to the reservoir.
- The valve is installed directly on top of the pump port surface with 'banjo' fittings and two cap screws (refer to the split view to the right).
- As the BPV valve is symmetrical it can be 'turned 180° so as not to interfere with chassis components. The valve can accommodate left hand as well as right hand rotating pumps.
- The valve can only be engaged or disengaged (through the 24 or 12 VDC solenoid) at low system pressures (below 20 bar).

IMPORTANT INFORMATION

- In order to secure a cooling flow through the system, a separate drain line **must** be connected from the BPV-F2 drain line fitting (shown in the split view) directly to tank; refer also to the schematic.
- The pressure connectors must be tightened (to 50 Nm) before the suction fitting clamp screws are tightened.


Bypass valve, type	BPV-F2
Max pressure, continuous [bar] intermittent [bar]	350 400
Solenoid voltage [VDC] standard (optional)	24 (12)
Power requirement [W]	17 (each solenoid)
Operating mode	Activated solenoid: Check valve closed
Bypass valve kits	
Ordering number	
	Torque press. connector to:
BPV-F2, 24 VDC 12 VDC	50 Nm
378 7424 378 7425	
O-ring kit	378 0641 Contains all five O-rings (as illustrated to the right); included in all valve kits

1) The BPV-F2 valve kit contains parts designated '1' in the split view to the right.

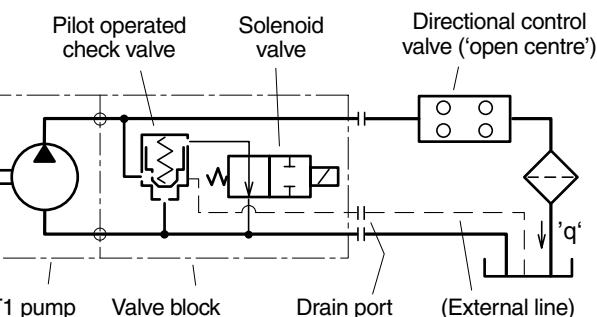
2) Contains all O-rings shown in the split view .

Bypass valve circuit schematic (example).

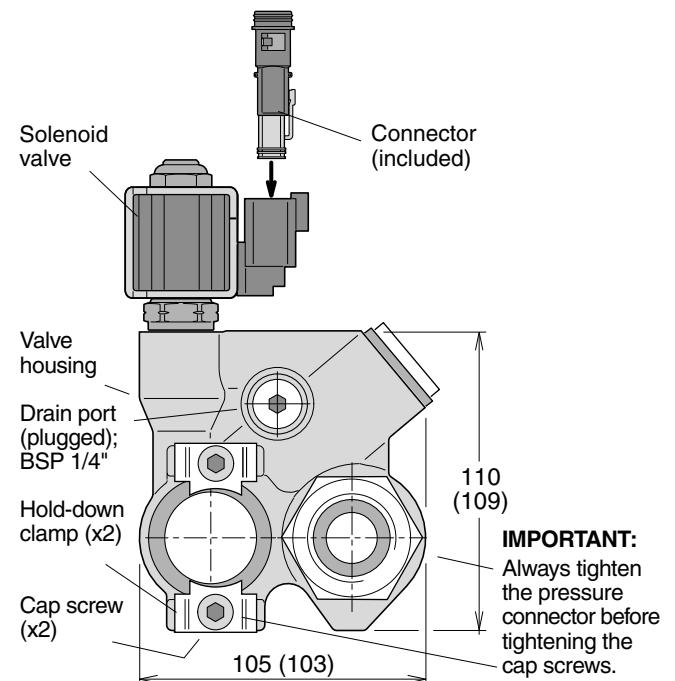
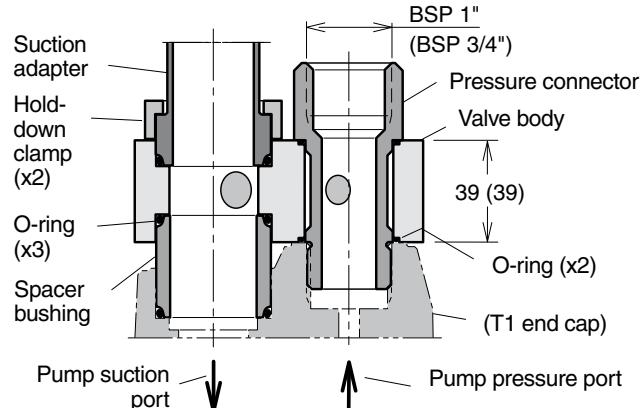
Bypass valve split view (with F2 end cap).

NOTE: A suction fitting kit (parts designated '2' in the split view) is **not** included with the F2 pump; it must be ordered separately (refer to chapter10).

BPV-T1-81 and -121 bypass valve


- The bypass valve is mainly utilised in applications where the T1 pump is driven from the crankshaft through a cardan shaft, or when it is installed on an engine PTO.
- The BPV bypass valve should be engaged during transportation when the pump is operating constantly and the engine is running at max rpm; the hydraulic system is not sized for the large flow that would otherwise go through it.
- The BPV valve substantially reduces the energy loss during transportation.
- The valve installs directly on top of the pump end cap with a pressure port 'banjo' fitting and an inlet port spacer bushing with two cap screws; refer to the illustration to the right.
- As the BPV valve is symmetrical, it can be 'turned 180°' to prevent interference with chassis components; it can be utilised for either left or right hand pumps.
- The valve function must only be activated or released (by means of the 24 VDC solenoid) at *no-load* (below 20 bar) *system pressure*.

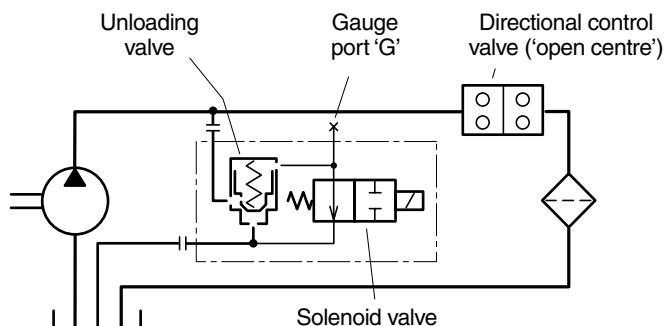
IMPORTANT INFORMATION



- In order to prevent heat build-up in the pump during transportation, it is important that at least 5 l/min comes out of the filter at 'q' (refer to the schematic). This applies to an 'open center' system when the valve is in the bypass mode (non-activated solenoid).
- Please note:**
 - If the flow at 'q' is less than 5 l/min (caused e.g. by a high pressure drop in the main system) when the valve is in the bypass mode, or
 - if the hydraulic system is of the 'closed center' type (with a shunt), then an external line **must be installed** from the bypass valve drain port directly to tank as shown in the schematic; a drain fitting kit is available (below).

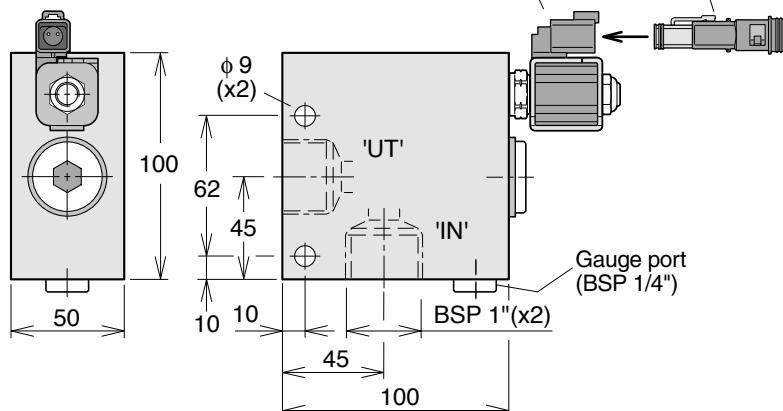
Bypass valve, type BPV-T1-81 and -121

Max pressure, continuous [bar] intermittent [bar]	200 350
Solenoid voltage [VDC]	24 or 12
Power requirement [W]	17
Operating mode	Activated solenoid: Check valve closed
Bypass valve kits	Ordering number
BPV-T-81, 24VDC 12VDC	378 7201 378 7202
BPV-T1-121, 24VDC 12VDC	378 7203 378 7204
O-ring kit	378 0641 Contains all five O-rings (as illustrated to the right) included in all valve kits
Drain fitting kit	378 3039 Contains a drain line fitting and a bonded seal.

Bypass valve schematic.



NOTE: Dimensions are shown for BPV-T1-121 (those for BPV-T1-81 are in parenthesis)

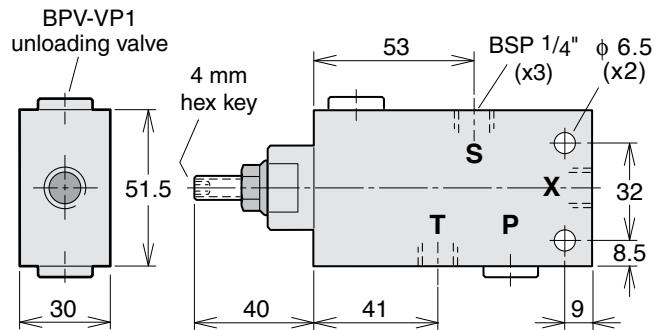

Bypass valve installation and cross section.

BPV-L line mounted bypass valve

- The unloading valve BPV-L is utilised in hydraulic systems where the fixed displacement pump is engaged constantly and no flow is required, i.e. during transportation. The flow is directed through the unloading valve which has a low pressure loss and less heat is being generated in the system.
- When the solenoid is activated the unloading valve closes and the pump flow is directed to the directional control valve or other user.

Unloading valve, type	BPV-L
Max operating pressure [bar]	350
Max flow [l/min]	250
Solenoid voltage [VDC]	24
Required power [W]	17
Operating mode	Activated solenoid: Check valve closed
Ordering number	378 1487

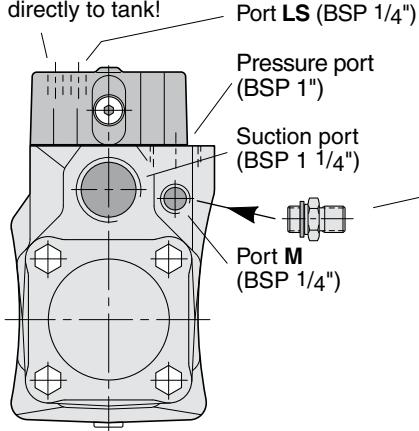
BPV-VP1 unloading valve


The BPV-VP1 unloading valve is utilized in hydraulic systems where the pump is operating constantly.

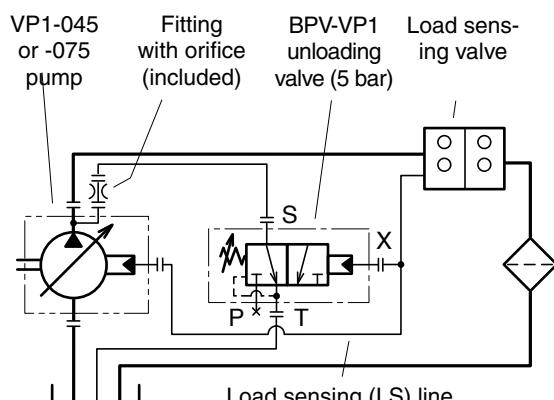
The valve, which requires no additional control valve, allows the pump to operate on- or off-load up to its max selfpriming speed.

The valve protects the pump from being overheated in the off-load mode by allowing a small flow through the pump (refer to the schematics). When a load sensing valve function is engaged, the bypass flow is cut off (as port 'X' is being pressurized).

Valve type	Ordering number	Rated flow [l/min]	Max press. [bar]
BPV-VP1	379 8799	20	350

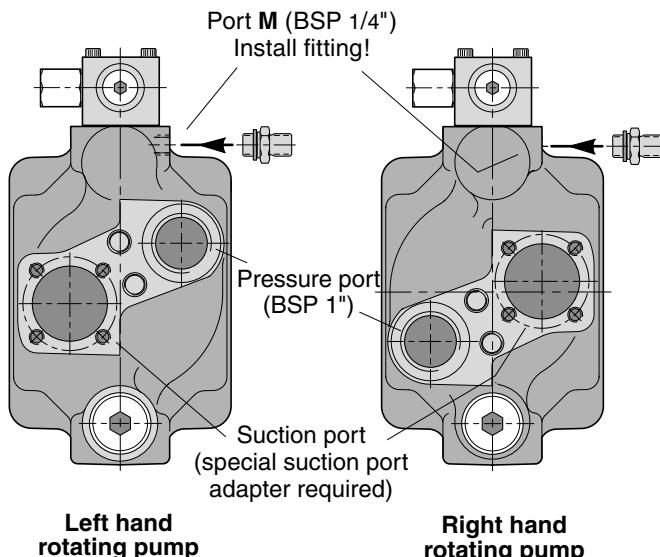

NOTE: - BPV-VP1 with VP1-45 or -75, see below
- BPV-VP1 with VP1-095 or -120, see next page.

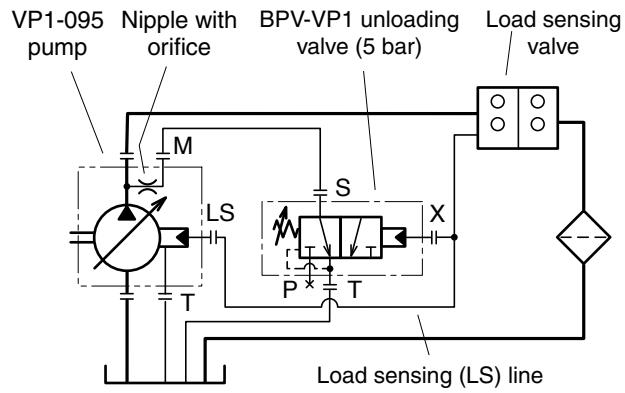
BPV-VP1 unloading valve.


BVP-VP1 with VP1-45/75 pumps

Port **T** (BSP 1/4")
 Must be connected directly to tank!

NOTE:

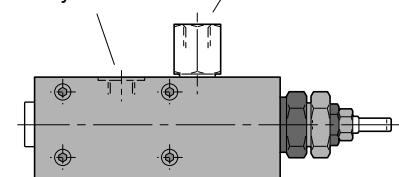

- Install the fitting (included) in port M and connect it, in turn, to port S of the unloading valve (see schematic).
- An orifice is included in the fitting.


BPV-VP1 installation schematic with VP1-45/-75 pump.

VP1-45/-75 end view (showing ports).

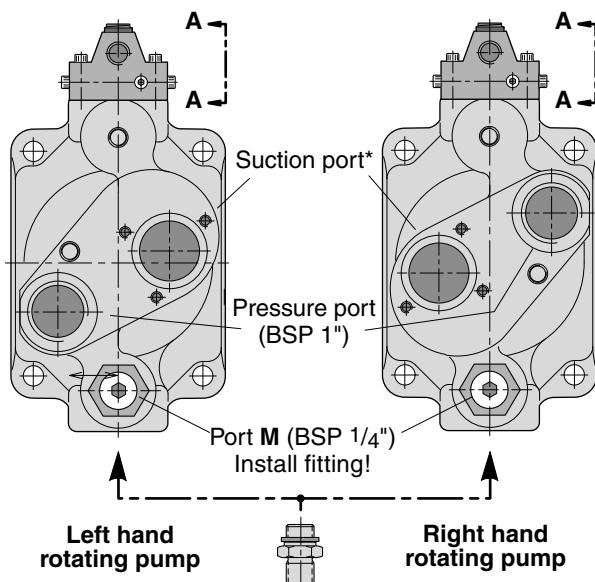
BPV-VP1 with VP1-095 pumps

VP1-095 main ports (with fitting installation).

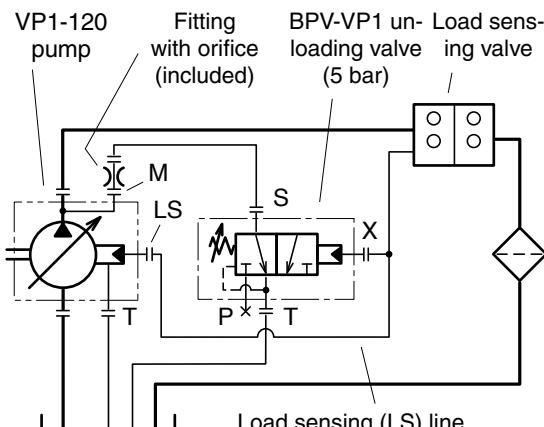


BPV-VP1 installation schematic with VP1-095 pump.

NOTE:

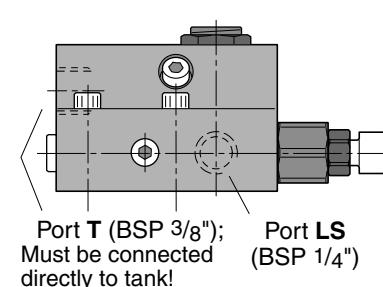

- Install the fitting (included) in port M and connect it, in turn, to port S of the unloading valve (see schematic).
- An orifice is included in the fitting.

Port **T** (BSP 1/4");
Must be connected directly to tank!


VP1-095 control valve ports.

BPV-VP1 with VP1 -120 pumps.

VP1-120 main ports (with fitting installation).


* special suction port adaproer required

BPV-VP1 installation schematic with VP1-120 pump.

NOTE:

- Install the fitting (included) in port M and connect it, in turn, to port S of the unloading valve (see schematic).
- An orifice is included in the fitting.

View A-A

Accessories

**Adapter kits and accessories
for F1, F2, T1 and VP1 pumps**

Contents	Page
PTO Air Valve Kits:	
Air valve kit for Volvo PTO's	62
Universal PTO air valve kit.....	62
PTO Adapter Kits:	
PTO adapter kit for Scania ED 120 engines	63
PTO adapter kit for Scania ED 160 engines	64
PTO adapter kit for Mercedes engines (R6)	65
PTO adapter kit for Mercedes engines (V6, V8)	65
PTO adapter kit for MAN (D20, D26, D28)	65
Cardan shafts, pump couplings and mounting brackets	66
Cardan shaft specifications	66
PTO flange adapters	66
Pump couplings	67
SB splitter boxes.....	68
Recommendations.....	68
Installation information.....	68
Splitter box installation.....	69

11

12

Air valve kit for Volvo PTO's

- The air valve kit is suitable for operating a Volvo PTO on Series FM and FH truck chassis. All parts required to operate the PTO are included in the kit (as shown below).
- The air valve can be combined with other air valves on the chassis; this means a simple installation with a common air supply and a minimum of hoses.
- All electrical wires are pre-installed on the chassis. The relay should be installed in socket K1-14 behind the dashboard cover.
- Function:**
 The relay makes sure the PTO is being disengaged as soon as the 'ignition key' is turned off.
 To re-engage the PTO, the operator has to put the switch back to neutral, and then move it to the 'ON' position.

Air valve kit for Volvo PTO's.

PTO air valve kit **Volvo**

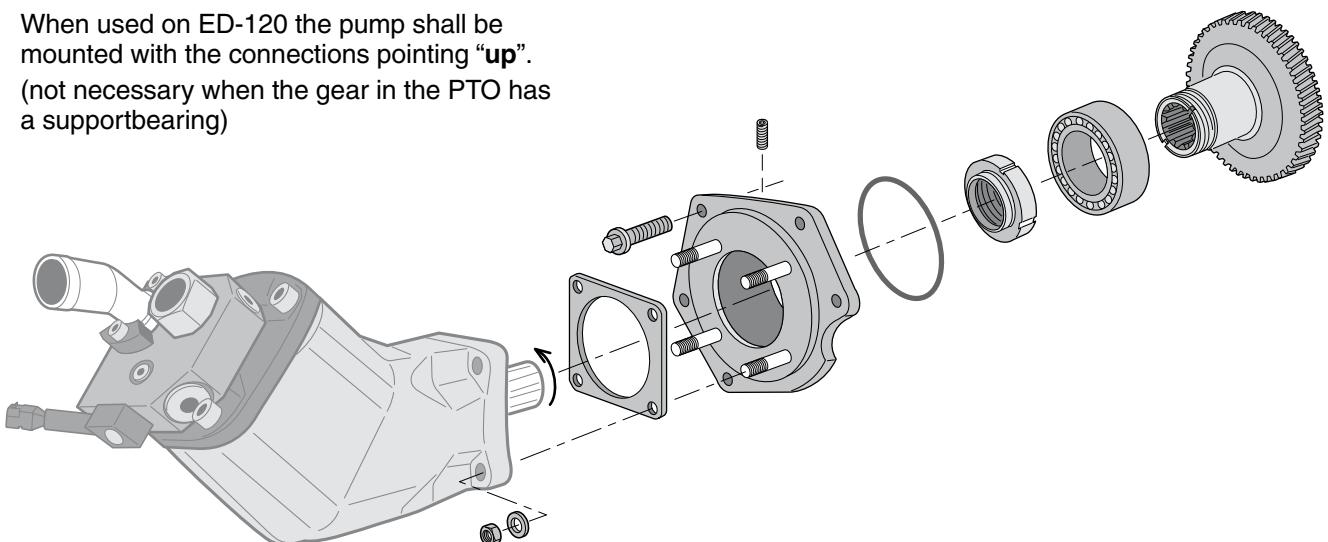
Air valve nominal voltage [VDC]	24
Nominal current [A]	0.4
Required power [W]	9.6
Max air pressure [bar]	10
Air hose size	1/4"
Operating mode	Activated solenoid: Air valve open and PTO engaged.
Ordering number, series FM and FH	378 1010

Universal PTO air valve kit

- The kit includes all parts required for manoeuvring the PTO.
- The air valve kit is suitable for most PTO's with a metric M12x1.5 air connection.
- The air valve can be installed with other air valves on the chassis which means simple installation with common air supply and a minimum of hoses.
- The air valve can be connected to electrical wires usually pre-installed on the chassis.

PTO air valve kit **Universal**

Air valve nominal voltage [VDC]	24
Nominal current [A]	0.4
Required power [W]	9.6
Max air pressure [bar]	10
Air hose size	1/4"
Operating mode	Activated solenoid: Air valve open and PTO engaged.
Ordering number	370 8779


PTO adapter kit for Scania ED 120 engines

The adapter also fit ED90, motor DC9-11, from September 2004 and later.

- With the adapter kit, a hydraulic pump (e.g. F1 or VP1) that meets the ISO standard can be installed on the PTO of the Scania 12 liter engine.
- The PTO gear is supplied with the chassis.
- Please note:** The engine must be ordered with a PTO.

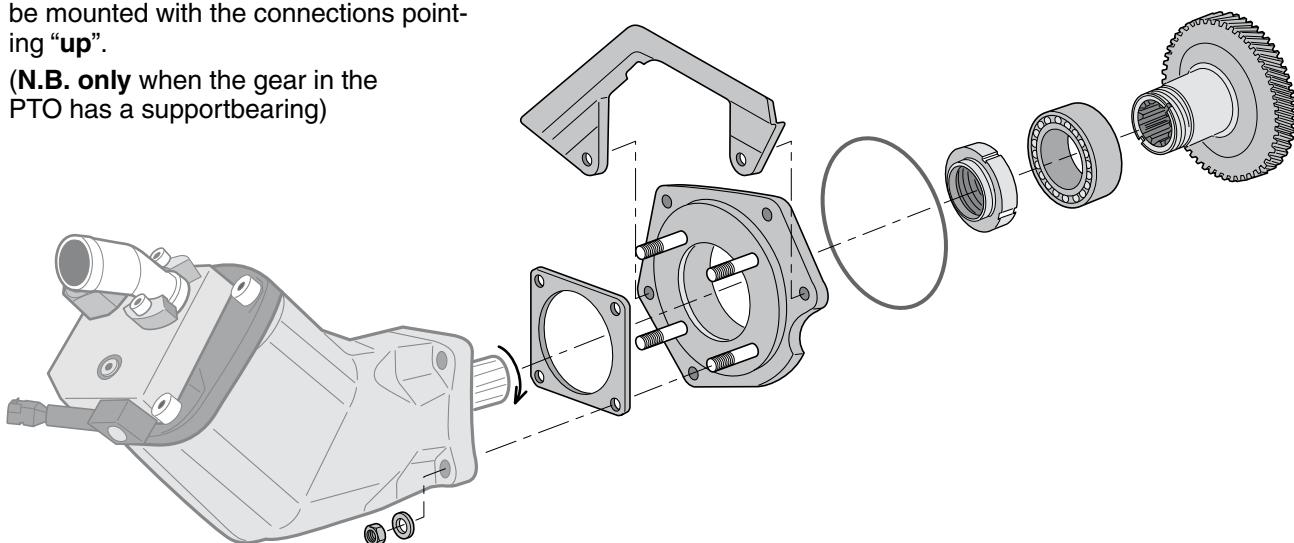
NOTE!

When used on ED-120 the pump shall be mounted with the connections pointing "up".
(not necessary when the gear in the PTO has a supportbearing)

Gasket between pump and adapter is not included.

Max. torque [Nm]	600
Gear ratio (engine:pump)	1 : 1.19
Pump rotation	Right hand (clockwise)

PTO adapter kit	Ordering number
ED-90/120-F1/F2, bearing supported (37°)	378 3080
ED-90/120-VP1, bearing supported (22°)	378 3081

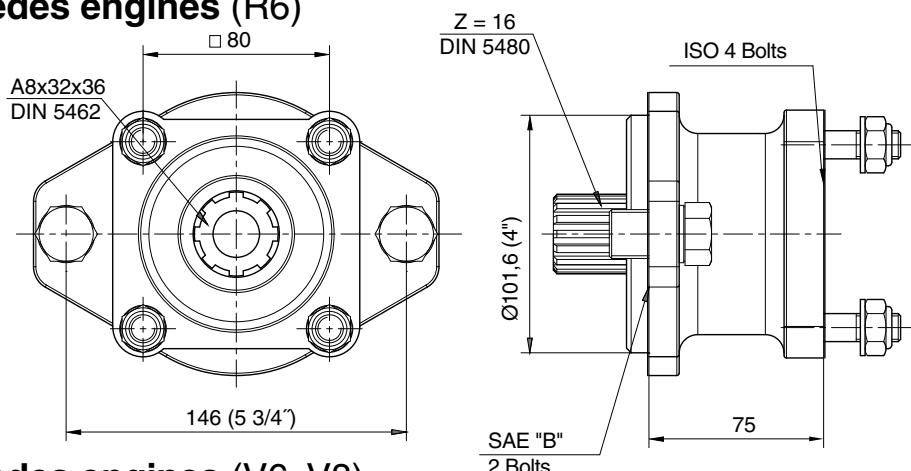

PTO adapter kit for Scania ED 160 engines

- With the adapter kit, a hydraulic pump (e.g. F1 or VP1) that meets the ISO standard can be installed on the PTO of the Scania 16 liter engine.
- The PTO gear is supplied with the chassis.
- Please note:** The engine must be ordered with a PTO.

NOTE!

When used on ED-160 the pump shall be mounted with the connections pointing "up".

(N.B. only when the gear in the PTO has a supportbearing)

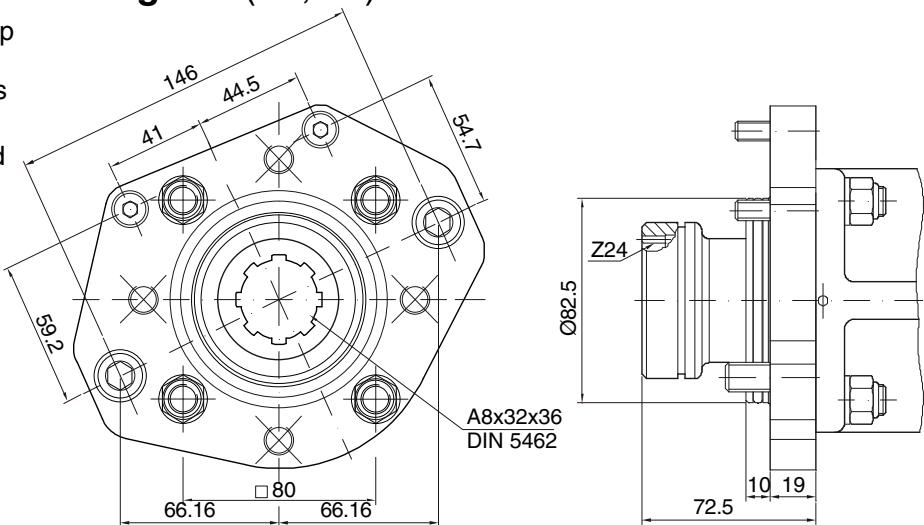

Gasket between pump and adapter is not included.

Max. torque [Nm]	600
Gear ratio (engine:pump)	1 : 1.19
Pump rotation	Left hand (counter clockwise)
PTO adapter kit	Ordering number
ED-160-F1/F2, bearing supported (37°)	378 3082
ED-160-VP1, bearing supported (22°)	378 3083

PTO adapter kit for Mercedes engines (R6)

With the adapter kit, a hydraulic pump that meets the ISO standard can be installed on the PTO of the Mercedes R6 engines.

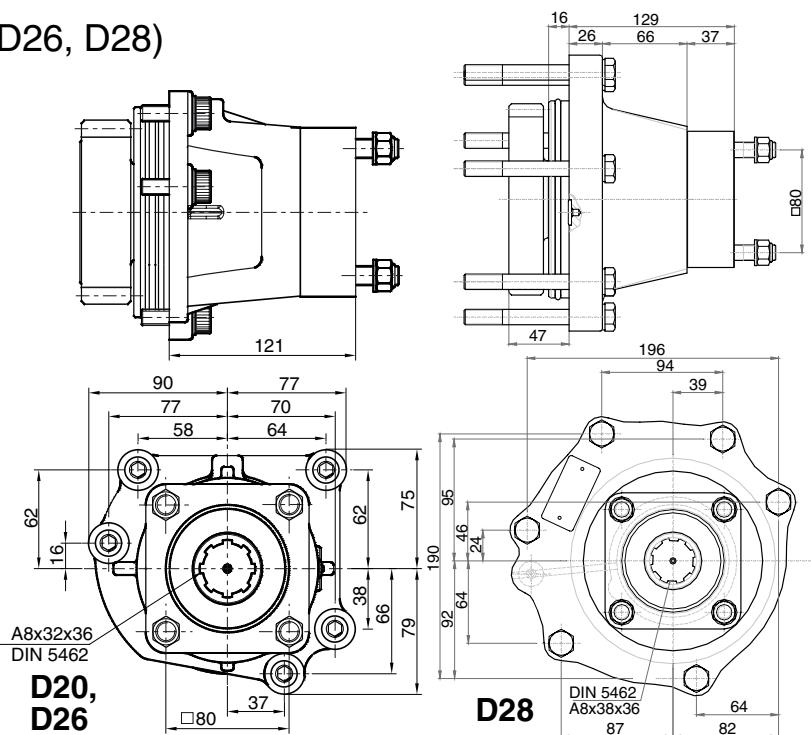
Torque continuous	300 Nm
Torque intermittent	330 Nm
Gear ratio (engine to pump)	1 : 1.071
Pump rotation	Right hand
Ordering No.	0050706404

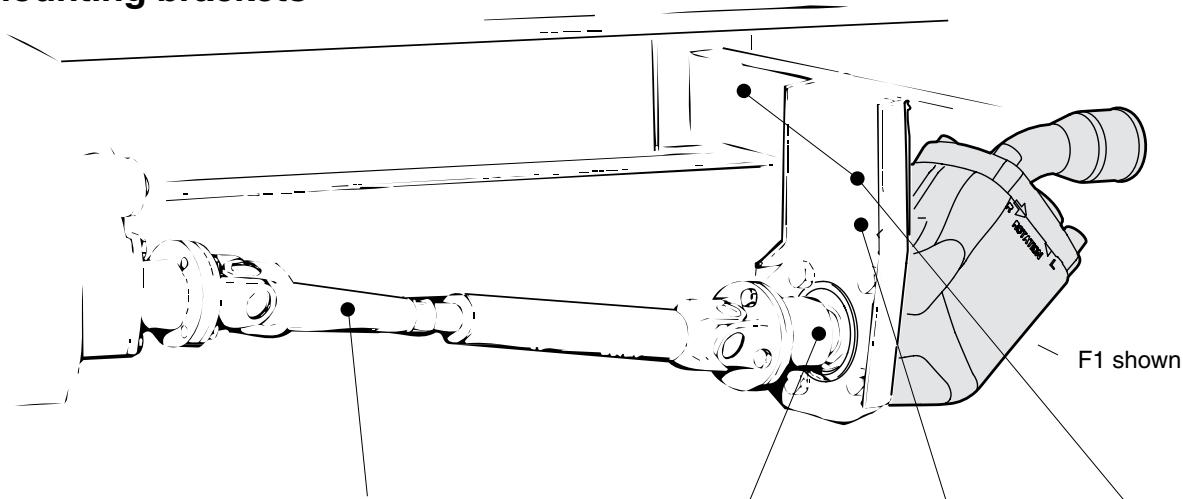


PTO adapter kit for Mercedes engines (V6, V8)

With the adapter kit, a hydraulic pump that meets the ISO standard can be installed on the PTO of the Mercedes V6 and V8 engines.

This adapter (7012104), can be fitted on the original DC SAE -A adapter, delivered together with the new ACTROS from DC factory.


Torque continuous	390 Nm
Torque intermittent	470 Nm
Gear ratio (engine to pump)	1 : 1.15
Pump rotation	Right hand
Ordering No.	00507012104


PTO adapter kit for MAN (D20, D26, D28)

With the adapter kit, a hydraulic pump that meets the ISO standard can be installed on the PTO of the MAN D20 engines.

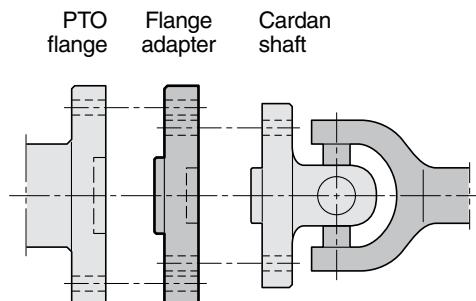
	D20, D26	D28
Torque continuous	400 Nm	400 Nm
Torque intermittent	570 Nm	570 Nm
Gear ratio (engine to pump)	1 : 1.233	1 : 1.075
Pump rotation	Right hand	Right hand
Ordering No:		
D20, D26	0050081903	
D28	0050082403	

Cardan shafts, pump couplings and mounting brackets

Pump or splitter box type	Cardan shaft kit Type	Ordering no.	Pump coupling Type	Ordering no.	Bracket ordering no.	Bracket kit ordering no.
F1 ¹⁾	SAE 88 ¹⁾	73 001	SAE 88 ¹⁾	370 4628 378 0644	379 7831	379 7832
F1 (New)	" "	"	"	"	"	"
F1 (New)	SAE 97	370 0315	SAE 97	378 0645 370 4631	379 7831	379 7832
F1	" "	"	"	"	"	"
F2	" "	"	"	"	"	"
T1-51	" "	"	"	"	"	"
VP1	" "	"	"	"	"	"
SB154, SB118	SAE 97	370 0315	SAE 97/ DIN 90	Included with splitter box		370 5220

1) The SAE 88 cardan shaft and pump coupling can also be used to drive a series F2, T1-51 or VP1 pump providing max allowed shaft torque (below) is not exceeded.

Cardan shaft specifications


Cardan shaft type	Spicer designation	Max length [mm]	Diameter [mm]	Max torque peak/contin. [Nm]	Ordering number
SAE 88	K1140	1500 ²⁾	45	600/300	73 001
SAE 97	K1310	1500 ²⁾	50	1000/500	370 0315

2) One end not welded. Min length 350 mm.

PTO flange adapters

Cardan shaft type	PTO flange type	Flange adapter ordering no.
SAE 97	SAE 116	370 5896
SAE 116	SAE 97	370 5897³⁾
DIN 100	DIN 90	370 5899³⁾

3) **WARNING!** The utilised cardan shaft torque limits (above) must not be exceeded.

Pump couplings

Designation	DIN 90 (fig. 1)
A	90
B	74.5
C	47 h7
D	M8
E ₁	61.5
E ₂ (F1)	57.2
VP1, F2, F1*	370 4634
F1	378 0642

NOTE: Max torque is limited by the cardan shaft.

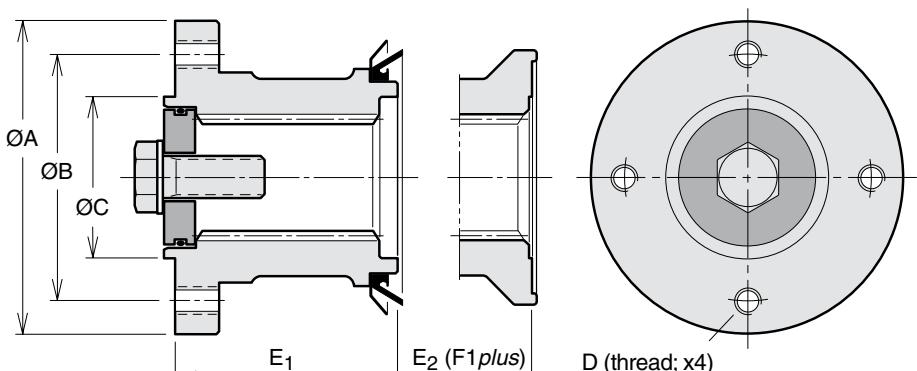


Fig. 1. DIN 90 (370 4634) (378 0642)

Designation	DIN 90 (fig. 2)
A	90
B	74.5
C	47 h7
D	8.2
E ₁	61.5
VP1, F2, F1*	370 7423

NOTE: Max torque is limited by the cardan shaft.

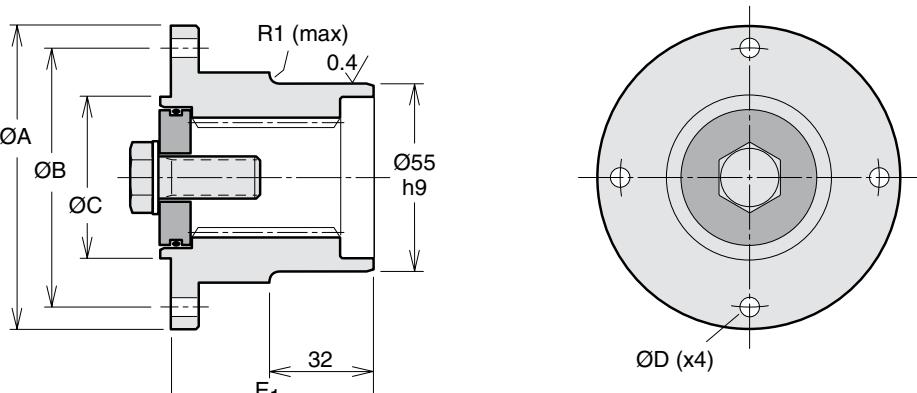


Fig. 2. DIN 90 (370 7423)

Designation	SAE88 (fig. 3)
A	88
B	69.9
C	57.15 H8
D	5/16" UNC
E ₁	65
E ₂ (F1)	59.5
Max torque [Nm] interm./contin.	600/300
VP1, F2, F1*	370 4628
F1	378 0644

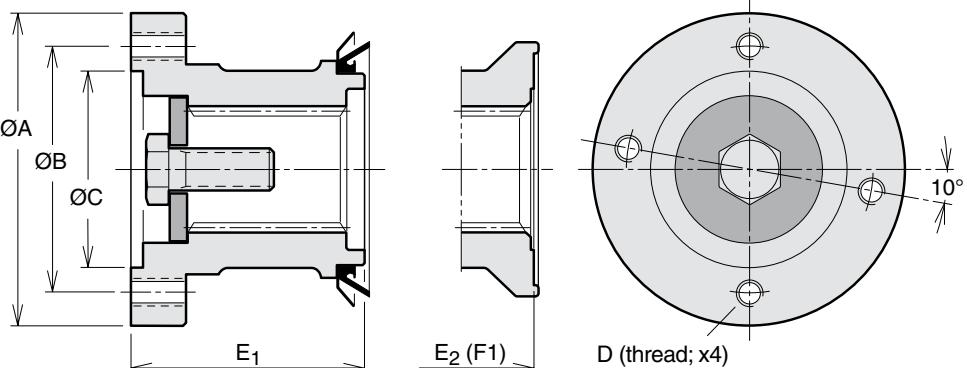


Fig. 3. SAE 88 (370 4628) (378 0644)

Designation	SAE97 (fig. 4)
A	97
B	79.4
C	60.33 H8
D	3/8" UNC
E ₁	65
E ₂ (F1)	59.5
Max torque [Nm] interm./contin.	1000/500
VP1, F2, F1*	370 4631
F1	378 0645

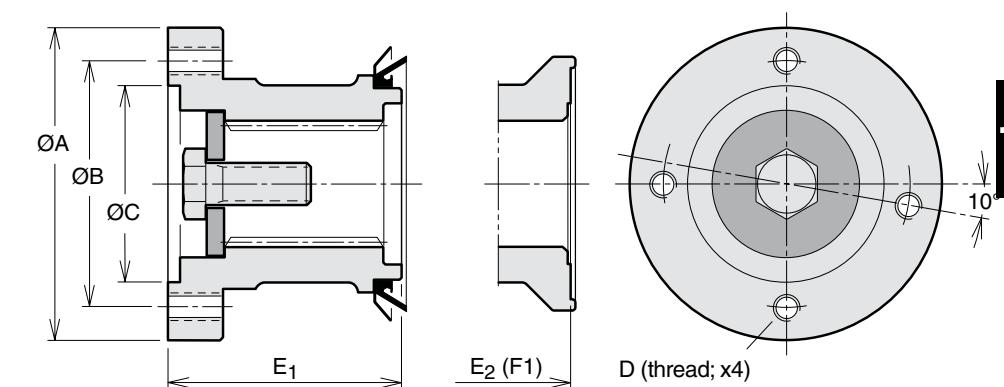


Fig. 4. SAE97 (370 4631) (378 0645)

F1* Old versions

SB splitter boxes

- The splitter box is utilised to drive two pumps, providing two separate, independent flows.
- The high permissible input shaft torque allows two large pumps to be operated simultaneously; make sure, however, that the PTO and the cardan shaft will stand the intended load.
- Pump mounting flange and shaft end must meet the ISO standard.
- The splitter box is available with either of two gear ratios (input shaft-to-pump):
SB 118 - 1:1.18
SB 154 - 1:1.54
- The shipping carton contains all parts required for the installation of the two pumps.

Recommendations

Use the following tables to verify that max pump rpm and max splitter box input torque are not exceeded.

Pump size	Max input speed [rpm]	
	SB 118	SB 154
F1-25	2200	1650
F1-41	2000	1550
F1-51	1850	1400
F1-61	1850	1400
F1-81	1650	1250
F1-101	1500	1150

Example: An SB 118 with an F1-025 and an F1-081 can be operated at max 1650 rpm (splitter box input speed), and an SB 154 with the same pumps at max 1250 rpm (2 1/2 ")

Pump size	Pump input torque [Nm] at		
	250 bar	300 bar	350 bar
F1-25	101	122	142
F1-41	162	195	227
F1-51	203	243	284
F1-61	236	284	331
F1-81	324	388	453
F1-101	412	495	577

Example: An F1-041-at 350 bar requires 227 Nm and F1-061 at 300 bar 284 Nm

Total required splitter box input torque:
SB 118 and SB 54: (227 + 284) = 511 Nm.
 Compare with max permissible torque (interm. 1000 Nm; continuous 700 Nm).

NOTE: If the splitter box should be utilised at close to the max permissible torque and/or max the permissible speed, please contact Parker Hannifin

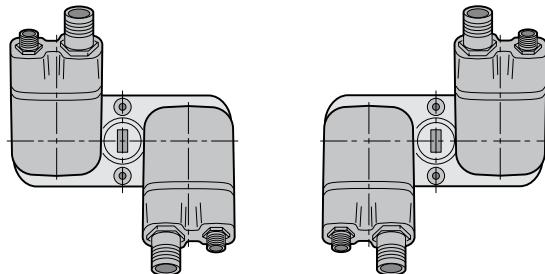
Installation information

1. Series F1 and T1 (fig. 2)

Valid: At continuous operation less than 30 min. and/or less than 80 kW continuous power output.

- Remove the uppermost drain plug and add 0.5 liter Shell Spirax AX (or similar fluid).
- Install the breather (and the 90° adapter, part no. 378 1069, if required).

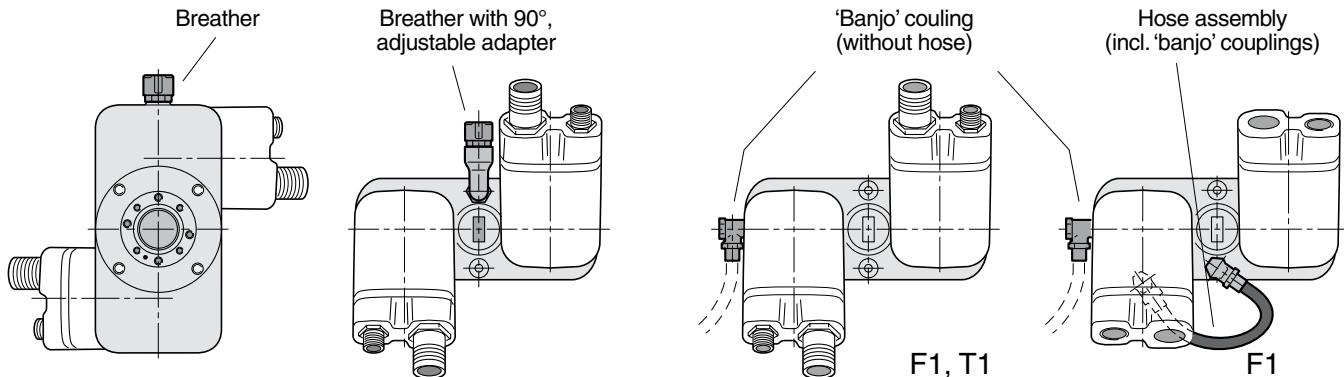
NOTE: The F1 or T1 shaft seal **must not** be removed.


2. Series F1 (right illustration, fig. 3)

Valid: At continuous operation more than 30 min. and/or more than 80 kW continuous power output.

- Install hose kit 378 1085 between the lowest drain port on one of the pumps (see fig. 3) and the BPV-F1-25 and -81 bypass valves.

lowest drain port of the splitter box.


- Install a drain hose between the drain port on the side of the splitter box and the reservoir; it must end below the lowest oil level in the reservoir. Utilise one of the banjo couplings included in hose kit 378 1085.

NOTE: The inlet (suction) ports of the pumps should always face the splitter box center, as shown, in order to counteract internal gear forces.

Fig. 1. F1-pumps installed on a splitter box.

Designation	SB 118	SB 154
Gear ratio (inp. shaft-to-pump)	1:1.18	1:1.54
Max input torque		
intermittent/continuous [Nm]	— 1000 / 700 —	
Max power		Housing oil temperature must not exceed 75 °C.
Weight [kg]	— 11.5 —	
Ordering No, bearing supported		00506010699 00506010599

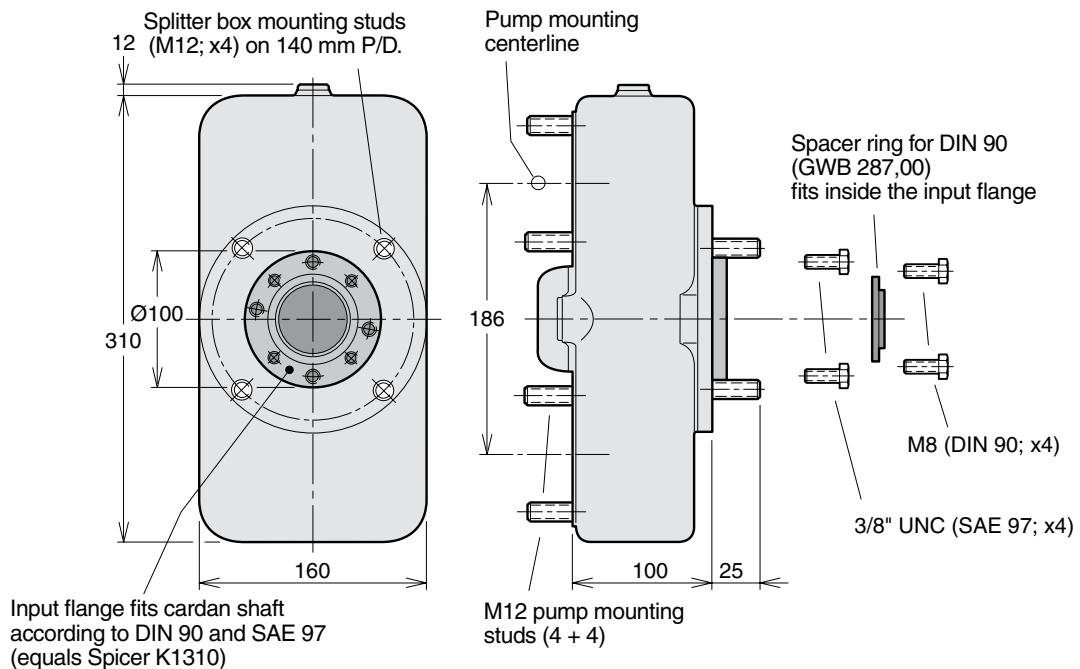

Breather kit (incl. 90°, adjustable adapter and seals):
 Part no. 378 1069.

Fig. 2. Breather installation on the splitter box.

Hose kit (hose sub-ass'y and separate 'banjo' coupling):
 Part no. 378 1085.

Fig. 3. Forced cooling of the splitter box.

Splitter box installation

Installation and start up

Installing couplings, sleeves, and gears on the pump shaft.

This is a short installation and start up information.

To have the complete and latest installation information, always see the installation info supplied together with the pump.

PTO installation

- 'Left hand' and 'Right hand' rotation defined in the illustrations on page 72.
- The driving gear of the PTO and the driven gear of the pump are shown in the illustration below. (A right hand rotating pump is shown).

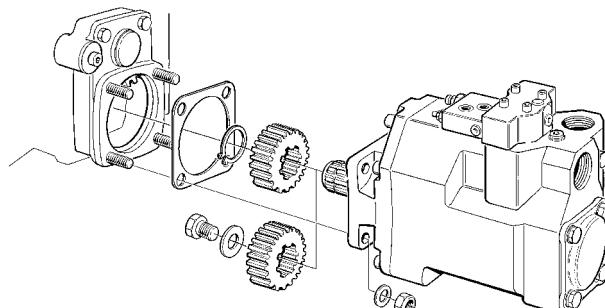
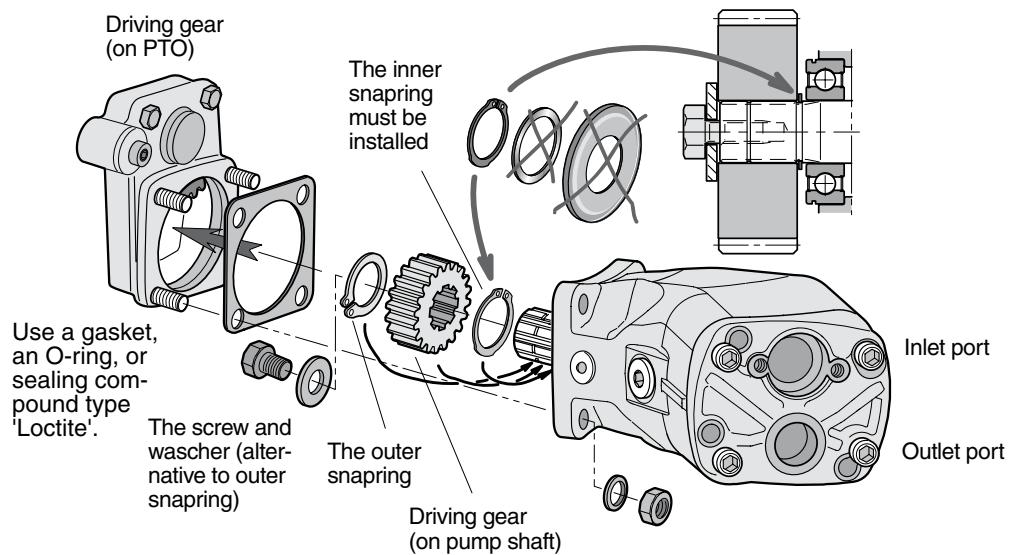



Fig. 6. VP1-to-PTO installation.

IMPORTANT

Use some kind of special tool when you install couplings, sleeves, and gears on the pump shaft. Force must never be used when installing these parts on the F1 shaft.

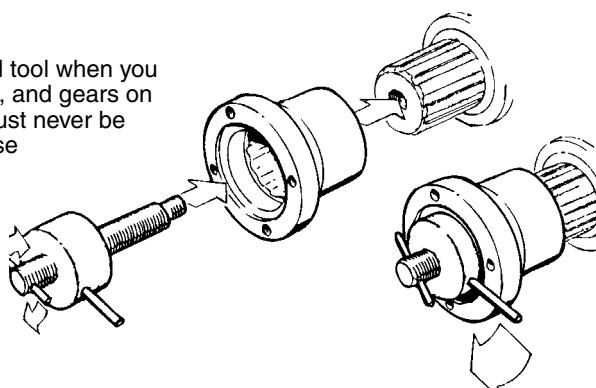
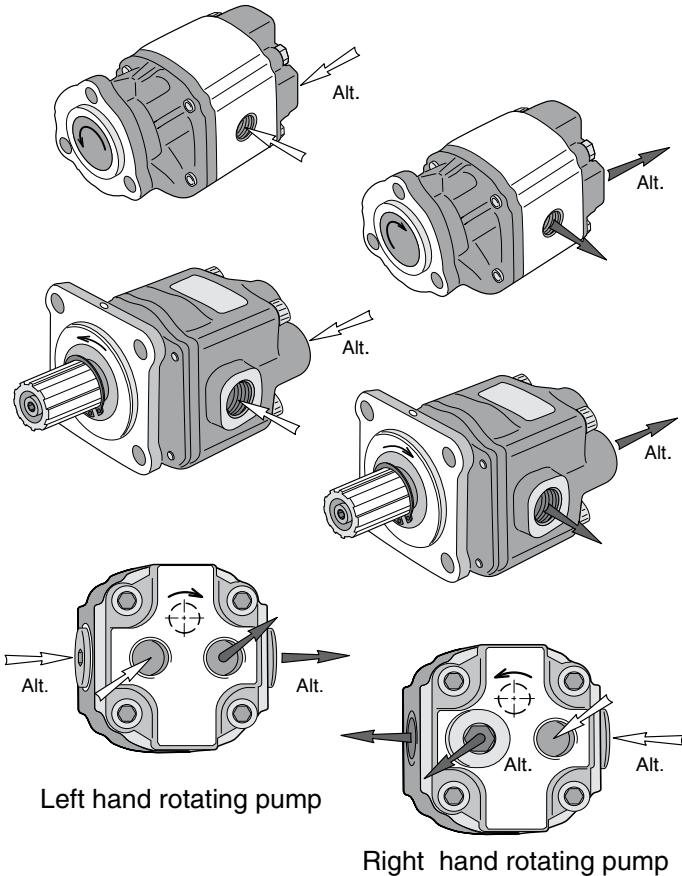



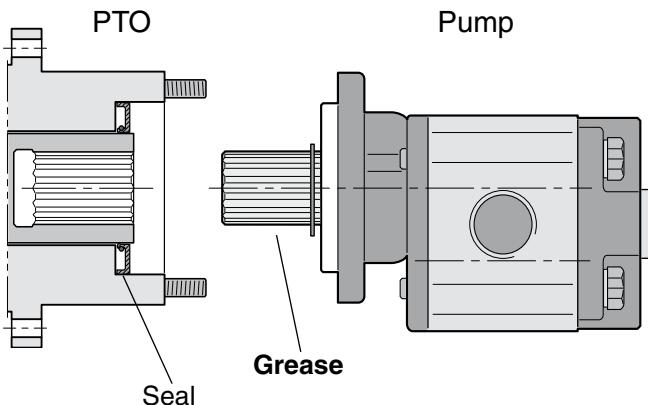
Fig. 7 Mounting tool.

NOTE: When considering installing an F1 on a splitter box, please refer to the installation information provided on pages 68- 69, chapter 12.

1) Flow vs. shaft rotation

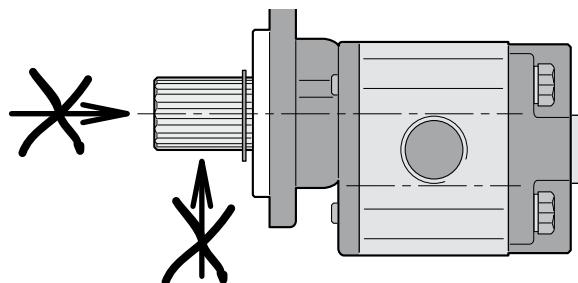
- The gear pumps are bi-directional (and internally drained)
- Port connector assembly:
 - Screw in the connector until it firmly touches the pump housing; then tighten the connector 30° (1/12 turn).

2) Suction fitting selection


Flow speed [m/s] at indicated line size [mm/in]

	19 3/4"	25 1"	32 1 1/4"	38 1 1/2"	50 2"
5	0.3	0.2	0.1	< 0.1	< 0.1
15	0.9	0.5	0.3	0.2	0.1
25	1.5	0.8	0.5	0.4	0.2
40	-	1.4	0.8	0.6	0.3
60	-	2.0	1.2	0.9	0.5
80	-	-	1.7	1.2	0.7
100	-	-	-	1.5	0.8

The gearpump must not be installed more than 0.5 m above the min. oil level in the reservoir.


3) Lubricate the spline

When the PTO has a sealed-off output sleeve (as shown in the illustration), the gearpump shaft spline **must be lubricated with a heat-resistant grease before start-up**; repeat periodically (at least once a year).

4) No external shaft loads

- No external radial or axial shaft loads are allowed on the pump shaft.
- In case of radial and/or axial shaft loads an external, bearing supported coupling must be utilized.

5) Hydraulic fluid

Use, exclusively, good quality hydraulic fluid with anti-foam and anti-wear additives.

The fluid must meet the following specifications:
DIN 51 524 / 51 525 (type HLP).

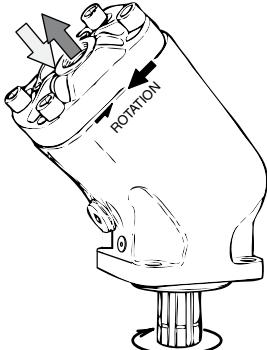
Viscosity

Acceptable:

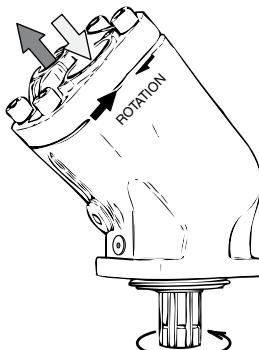
- 8 – 800 cSt (mm²/s)

Recommended:

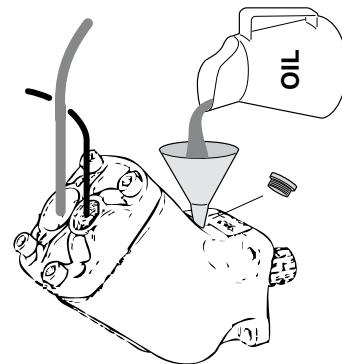
- 22 cSt (in cold climate)
- 37 cSt (in temperate climate)
- 46 cSt (in hot climate)


Temperature

- Min. -15 °C
- Max. +80 °C
- Cold start: -25 °C to -15 °C
(< 20 bar, < 1 500 rpm)


Filtration

- Suction line: Not recommended
- Pressure line: 10 to 25 µm.


Installation and start-up for F1, F2 and T1

Left hand (L.H.; counter clockwise) rotating pump.

Right hand (R.H.; clockwise) rotating pump.

Before start-up, the housing must be filled with hydraulic fluid.

Direction of rotation

The pictures above show direction of flow vs. shaft rotation.

The direction of rotation can be changed (i. e. from right hand to left hand) by turning the end cap.

Remove the four cap screws and turn the end cap about half a turn while making sure it stays in contact with the barrel housing.

Re-fit the cap screws and torque to 80-100 Nm.

Installation

Make sure max torque and bending moment (due to the weight of the pump) of the utilised PTO are not exceeded. (The approx. center of gravity of the various pump sizes are shown in the installation drawings).

The top illustration on page 70 shows two ways of installing a gear on the shaft of fixed displacement pumps. The pump shaft spline end usually fits directly in the PTO internal spline coupling.

NOTE: In order to obtain the longest bearing life, the pump should be installed according to the information shown on page 73 "Pump bearing life".

Fluid viscosity

Recommended viscosity: 20 to 30 mm²/s (cSt).

Operating viscosity limits:

- Min 10 mm²/s; max 400 mm²/s.
- At start-up, max 4000 mm²/s.

Fluids

The fixed displacement pumps data shown in the specifications for each pump in chapter 3 to 6 are valid when operating on high quality, mineral based hydraulic oil.

Type HLP (according to DIN 51524) hydraulic oil is suitable as well as biologically degradable fluids like natural and synthetic esters and polyalfaolefins.

The utilised hydraulic fluid shall meet one of the following Swedish standards:

- SS 15 54 34
- SMR Hydraulic Oil Standard 1996-2.

Contact Parker Hannifin for further information.

NOTE: - ATF (automatic transmission fluid) and API type CD engine oils may also be useable.
- Seals are made of nitrile rubber; make sure the utilised fluid is compatible with this material.

Fluid temperature

Main circuit: Max 75 °C.

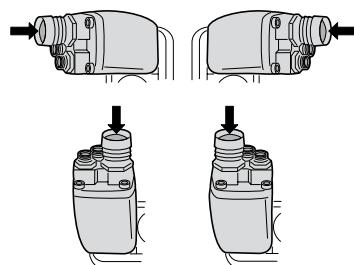
NOTE: When considering installing an fixed displacement pump on a splitter box, please refer to the installation information provided on pages 68 and 69, chapter 12.

Drain line

Fixed displacement pumps don't need an external drain line as they are internally drained.

When the pump is mounted in a Engine-PTO we recommend a drain line from the bypassvalve directly to oiltank.

Filtration


Filtration should follow ISO standard 4406: 1987, code 18/13.

To obtain the longest life of fixed displacement pumps, we recommend an oil cleanliness of 10 µm (absolute).

Start-up

Make sure the entire hydraulic system is clean before filling it with a recommended hydraulic fluid. In particular, make sure the pump is filled (to at least 50%) as the internal leakage does not provide sufficient lubrication at start-up.

NOTE: - The suction port should always be above the pressure port when the pump is installed above the reservoir oil level.
- During operation, the pump must be filled with oil to at least 50%.

If any oil should drop out of the indication-hole on the pump;

- Stop the system immediately.
- Determine the cause of leakage.
- Replace damaged parts.
- Make sure you have corrected the source of the problem, not only the symptom.

Parker can not be held responsible for damage to PTO, engine and gearbox caused by improper maintenance of the hydraulic system.

Pump bearing life

Bearing life is dependent on how the pump is installed on the PTO as shown in the illustrations below.

A pump mounted according to fig. 1 gives the lowest bearing life; the highest is obtained when installed according to fig. 3.

Parker Hannifin will assist in determining bearing life in a particular application.

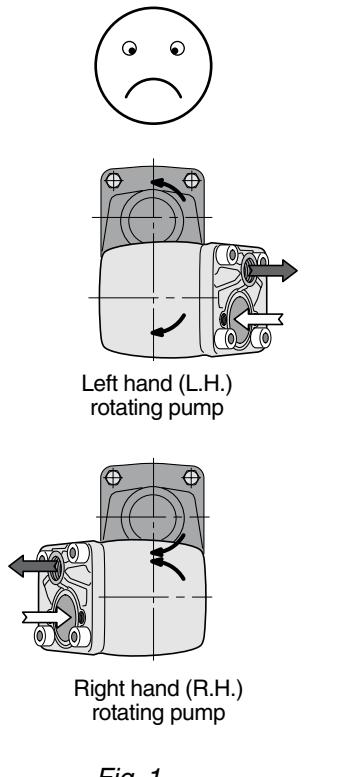


Fig. 1.

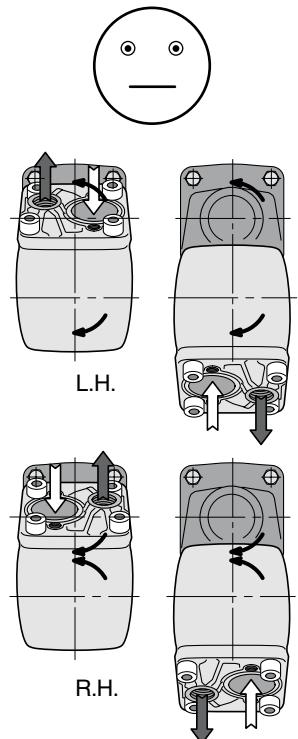


Fig. 2.

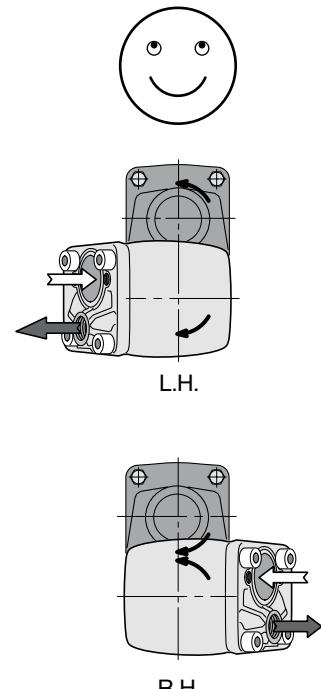


Fig. 3.

Installation and start-up for VP1

Direction of rotation

The basic VP1 pump is uni-directional; there is a left hand and a right hand version (indicated by the arrow on the side of the VP1 pump (fig. 4 and 5).

Consequently, the required direction of rotation must be stated when ordering the pump.

Installation

The VP1 can be installed (close-coupled) directly on a PTO (which meets ISO DIN 5462).

Before start-up, the pump must be filled with hydraulic fluid and purged. Utilise the uppermost purge plug (refer to the installation drawing on pages 43, 46 and 48, chapter 8).

Figure 6 (page 70) shows two ways of installing a gear on the VP1 shaft. On a non/geared or a geared PTO with support bearings, the pump shaft is usually installed directly in the internally splined PTO output shaft.

Make sure max torque and bending moment (due to the weight of the pump) of the utilised PTO are not exceeded. (The approx. center of gravity of the various pump sizes are shown in the installation drawings).

Hydraulic fluids

The VP1 data shown in the specifications on page 42, chapter 8 are valid when operating on a high quality, mineral based fluid.

Hydraulic fluids type HLP (DIN 51524), ATF (auto-matic transmission fluids), and API type CD engine oils are suitable.

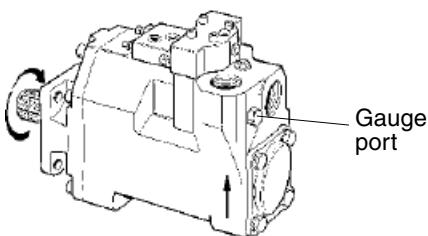


Fig. 4. Left hand rotating pump.

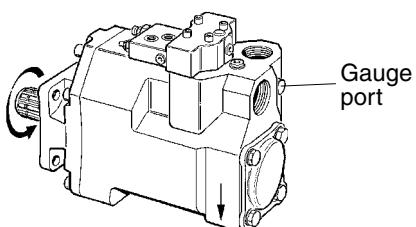


Fig. 5. Right hand rotating pump.

Fluid temperature

Main circuit: Max 75 °C.

Viscosity

Recommended viscosity: 20 to 30 mm²/s (cSt).

Operating viscosity limits: 10 to 400 mm²/s.

At start-up: Max 1000 mm²/s.

Filtration

To obtain long VP1 life, we recommend a filtration level of:

- 25 µm (absolute) in clean environment or at low pressures.
- 10 µm (absolute) in contaminated environment or at high pressures.

Filtration should meet ISO standard 4406: 1987, code 18/13.

Drain line

The LS valve *requires a separate drain line*; it should be routed directly to the reservoir (refer to fig. 8).

Start-up

Make sure the entire hydraulic system is clean before filling it with a recommended fluid.

In addition, the VP1 pump must be purged to remove any entrapped air in the pump housing; utilise the uppermost purge port (fig. 8).

IMPORTANT

As shown in fig. 8, the pump inlet must always be below the lowest reservoir oil level.

Before start-up, open the plug, purge the pump, and re-tighten the plug

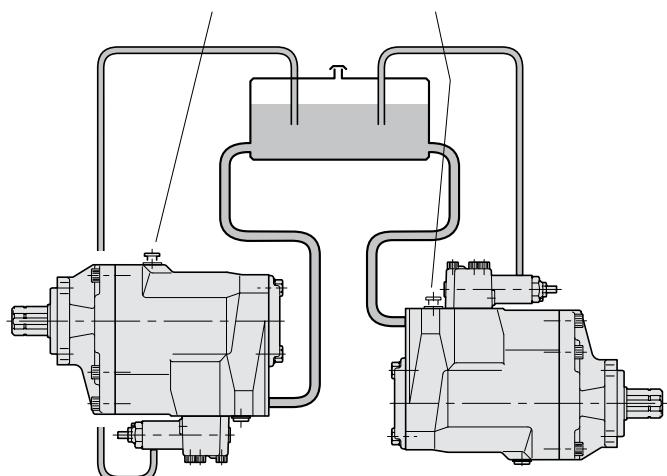


Fig. 8. VP1 should be installed below the reservoir fluid level.

Purging should be performed when the pump is connected to the reservoir and the system is filled with fluid.

WARNING – USER RESPONSIBILITY

FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

This document and other information from Parker-Hannifin Corporation, its subsidiaries and authorized distributors provide product or system options for further investigation by users having technical expertise.

The user, through its own analysis and testing, is solely responsible for making the final selection of the system and components and assuring that all performance, endurance, maintenance, safety and warning requirements of the application are met. The user must analyze all aspects of the application, follow applicable industry standards, and follow the information concerning the product in the current product catalog and in any other materials provided from Parker or its subsidiaries or authorized distributors.

To the extent that Parker or its subsidiaries or authorized distributors provide component or system options based upon data or specifications provided by the user, the user is responsible for determining that such data and specifications are suitable and sufficient for all applications and reasonably foreseeable uses of the components or systems.

13

Offer of Sale

Please contact your Parker representation for a detailed "Offer of Sale".

Parker Worldwide

AE – UAE, Dubai
Tel: +971 4 8127100
parker.me@parker.com

AR – Argentina, Buenos Aires
Tel: +54 3327 44 4129

AT – Austria, Wiener Neustadt
Tel: +43 (0)2622 23501-0
parker.austria@parker.com

AT – Eastern Europe,
Wiener Neustadt
Tel: +43 (0)2622 23501 900
parker.easternEurope@parker.com

AU – Australia, Castle Hill
Tel: +61 (0)2-9634 7777

AZ – Azerbaijan, Baku
Tel: +994 50 2233 458
parker.azerbaijan@parker.com

BE/LU – Belgium, Nivelles
Tel: +32 (0)67 280 900
parker.belgium@parker.com

BR – Brazil, Cachoeirinha RS
Tel: +55 51 3470 9144

BY – Belarus, Minsk
Tel: +375 17 209 9399
parker.belarus@parker.com

CA – Canada, Milton, Ontario
Tel: +1 905 693 3000

CH – Switzerland, Etoy
Tel: +41 (0)21 821 87 00
parker.switzerland@parker.com

CL – Chile, Santiago
Tel: +56 2 623 1216

CN – China, Shanghai
Tel: +86 21 2899 5000

CZ – Czech Republic, Klicany
Tel: +420 284 083 111
parker.czechrepublic@parker.com

DE – Germany, Kaarst
Tel: +49 (0)2131 4016 0
parker.germany@parker.com

DK – Denmark, Ballerup
Tel: +45 43 56 04 00
parker.denmark@parker.com

ES – Spain, Madrid
Tel: +34 902 330 001
parker.spain@parker.com

FI – Finland, Vantaa
Tel: +358 (0)20 753 2500
parker.finland@parker.com

FR – France, Contamine s/Arve
Tel: +33 (0)4 50 25 80 25
parker.france@parker.com

GR – Greece, Athens
Tel: +30 210 933 6450
parker.greece@parker.com

HK – Hong Kong
Tel: +852 2428 8008

HU – Hungary, Budapest
Tel: +36 1 220 4155
parker.hungary@parker.com

IE – Ireland, Dublin
Tel: +353 (0)1 466 6370
parker.ireland@parker.com

IN – India, Mumbai

Tel: +91 22 6513 7081-85

IT – Italy, Corsico (MI)
Tel: +39 02 45 19 21
parker.italy@parker.com

JP – Japan, Fujisawa

Tel: +81 (0)4 6635 3050

KR – South Korea, Seoul
Tel: +82 2 559 0400

KZ – Kazakhstan, Almaty
Tel: +7 7272 505 800
parker.easternEurope@parker.com

LV – Latvia, Riga
Tel: +371 6 745 2601
parker.latvia@parker.com

MX – Mexico, Apodaca
Tel: +52 81 8156 6000

MY – Malaysia, Shah Alam
Tel: +60 3 7849 0800

NL – The Netherlands,
Oldenzaal
Tel: +31 (0)541 585 000
parker.nl@parker.com

NO – Norway, Asker
Tel: +47 66 753 400
parker.norway@parker.com

NZ – New Zealand, Mt Wellington
Tel: +64 9 574 1744

PL – Poland, Warsaw
Tel: +48 (0)22 573 24 00
parker.poland@parker.com

PT – Portugal, Leca da Palmeira
Tel: +351 22 999 7360
parker.portugal@parker.com

RO – Romania, Bucharest
Tel: +40 21 252 1382
parker.romania@parker.com

RU – Russia, Moscow
Tel: +7 495 645-2156
parker.russia@parker.com

SE – Sweden, Spånga
Tel: +46 (0)8 59 79 50 00
parker.sweden@parker.com

SG – Singapore
Tel: +65 6887 6300

SK – Slovakia, Banská Bystrica
Tel: +421 484 162 252
parker.slovakia@parker.com

SL – Slovenia, Novo Mesto
Tel: +386 7 337 6650
parker.slovenia@parker.com

TH – Thailand, Bangkok
Tel: +662 717 8140

TR – Turkey, Istanbul
Tel: +90 216 4997081
parker.turkey@parker.com

TW – Taiwan, Taipei
Tel: +886 2 2298 8987

UA – Ukraine, Kiev
Tel: +380 44 494 2731
parker.ukraine@parker.com

UK – United Kingdom,
Warwick
Tel: +44 (0)1926 317 878
parker.uk@parker.com

US – USA, Cleveland
(industrial)
Tel: +1 216 896 3000

US – USA, Lincolnshire
(mobile)
Tel: +1 847 821 1500

VE – Venezuela, Caracas
Tel: +58 212 238 5422

ZA – South Africa,
Kempton Park
Tel: +27 (0)11 961 0700
parker.southafrica@parker.com

European Product Information Centre

Free phone: 00 800 27 27 5374
(from AT, BE, CH, CZ, DE, EE, ES, FI, FR, IE,
IL, IS, IT, LU, MT, NL, NO, PT, SE, SK, UK)

US Product Information Centre

Free phone: 1-800-27 27 537
www.parker.com